Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387185706> ?p ?o ?g. }
- W4387185706 endingPage "435" @default.
- W4387185706 startingPage "435" @default.
- W4387185706 abstract "Determining the types of light curves has been a challenge due to the massive amount of light curves generated by large sky survey programs. In the literature, the light curves classification methods are overly dependent on the imaging quality of the light curves, so the classification results are often poor. In this paper, a new method is proposed to classify the Kepler light curves from Quarter 1, and consists of two parts: feature extraction and classification neural network construction. In the first part, features are extracted from the light curves using three different methods, and then the features are fused (transform domain features, light curve flux statistics features, and Kepler photometry features). In the second part, a classification neural network RLNet, based on Residual Network (ResNet) and Long Short Term Memory (LSTM), is proposed. The experiment involved the classification of approximately 150,000 Kepler light curves into 11 categories. The results show that this new method outperforms seven other methods in all metrics, with an accuracy of 0.987, a minimum recall of 0.968, and a minimum precision of 0.970 under all categories." @default.
- W4387185706 created "2023-09-30" @default.
- W4387185706 creator A5006467926 @default.
- W4387185706 creator A5011825627 @default.
- W4387185706 creator A5065062852 @default.
- W4387185706 creator A5067314253 @default.
- W4387185706 creator A5071943346 @default.
- W4387185706 date "2023-09-28" @default.
- W4387185706 modified "2023-10-09" @default.
- W4387185706 title "Feature-Based Classification Neural Network for Kepler Light Curves from Quarter 1" @default.
- W4387185706 cites W1900683338 @default.
- W4387185706 cites W1976526581 @default.
- W4387185706 cites W1996021349 @default.
- W4387185706 cites W2136848157 @default.
- W4387185706 cites W2155653793 @default.
- W4387185706 cites W2157825442 @default.
- W4387185706 cites W2158698691 @default.
- W4387185706 cites W2184417792 @default.
- W4387185706 cites W2194775991 @default.
- W4387185706 cites W2204423677 @default.
- W4387185706 cites W2335043803 @default.
- W4387185706 cites W2593412849 @default.
- W4387185706 cites W2734959260 @default.
- W4387185706 cites W2755241981 @default.
- W4387185706 cites W2766575740 @default.
- W4387185706 cites W2884570277 @default.
- W4387185706 cites W2919115771 @default.
- W4387185706 cites W2922073769 @default.
- W4387185706 cites W2930650313 @default.
- W4387185706 cites W2944851425 @default.
- W4387185706 cites W2963491272 @default.
- W4387185706 cites W2978980369 @default.
- W4387185706 cites W3012450678 @default.
- W4387185706 cites W3047680949 @default.
- W4387185706 cites W3098165218 @default.
- W4387185706 cites W3099440907 @default.
- W4387185706 cites W3100796605 @default.
- W4387185706 cites W3101812919 @default.
- W4387185706 cites W3106384162 @default.
- W4387185706 cites W3163969316 @default.
- W4387185706 cites W3192198283 @default.
- W4387185706 cites W3213644981 @default.
- W4387185706 cites W4205409248 @default.
- W4387185706 cites W4211256381 @default.
- W4387185706 cites W4281820452 @default.
- W4387185706 cites W4285334106 @default.
- W4387185706 cites W4289316232 @default.
- W4387185706 cites W4320917084 @default.
- W4387185706 doi "https://doi.org/10.3390/universe9100435" @default.
- W4387185706 hasPublicationYear "2023" @default.
- W4387185706 type Work @default.
- W4387185706 citedByCount "0" @default.
- W4387185706 crossrefType "journal-article" @default.
- W4387185706 hasAuthorship W4387185706A5006467926 @default.
- W4387185706 hasAuthorship W4387185706A5011825627 @default.
- W4387185706 hasAuthorship W4387185706A5065062852 @default.
- W4387185706 hasAuthorship W4387185706A5067314253 @default.
- W4387185706 hasAuthorship W4387185706A5071943346 @default.
- W4387185706 hasBestOaLocation W43871857061 @default.
- W4387185706 hasConcept C121332964 @default.
- W4387185706 hasConcept C130726490 @default.
- W4387185706 hasConcept C138885662 @default.
- W4387185706 hasConcept C150846664 @default.
- W4387185706 hasConcept C153180895 @default.
- W4387185706 hasConcept C154945302 @default.
- W4387185706 hasConcept C207963374 @default.
- W4387185706 hasConcept C2776401178 @default.
- W4387185706 hasConcept C41008148 @default.
- W4387185706 hasConcept C41895202 @default.
- W4387185706 hasConcept C44870925 @default.
- W4387185706 hasConcept C50644808 @default.
- W4387185706 hasConcept C68271606 @default.
- W4387185706 hasConceptScore W4387185706C121332964 @default.
- W4387185706 hasConceptScore W4387185706C130726490 @default.
- W4387185706 hasConceptScore W4387185706C138885662 @default.
- W4387185706 hasConceptScore W4387185706C150846664 @default.
- W4387185706 hasConceptScore W4387185706C153180895 @default.
- W4387185706 hasConceptScore W4387185706C154945302 @default.
- W4387185706 hasConceptScore W4387185706C207963374 @default.
- W4387185706 hasConceptScore W4387185706C2776401178 @default.
- W4387185706 hasConceptScore W4387185706C41008148 @default.
- W4387185706 hasConceptScore W4387185706C41895202 @default.
- W4387185706 hasConceptScore W4387185706C44870925 @default.
- W4387185706 hasConceptScore W4387185706C50644808 @default.
- W4387185706 hasConceptScore W4387185706C68271606 @default.
- W4387185706 hasIssue "10" @default.
- W4387185706 hasLocation W43871857061 @default.
- W4387185706 hasOpenAccess W4387185706 @default.
- W4387185706 hasPrimaryLocation W43871857061 @default.
- W4387185706 hasRelatedWork W1535843718 @default.
- W4387185706 hasRelatedWork W1547538309 @default.
- W4387185706 hasRelatedWork W2024447132 @default.
- W4387185706 hasRelatedWork W2121422741 @default.
- W4387185706 hasRelatedWork W2577502644 @default.
- W4387185706 hasRelatedWork W2734892257 @default.
- W4387185706 hasRelatedWork W2776010209 @default.
- W4387185706 hasRelatedWork W3023933134 @default.
- W4387185706 hasRelatedWork W4248372522 @default.