Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387186647> ?p ?o ?g. }
- W4387186647 endingPage "14" @default.
- W4387186647 startingPage "1" @default.
- W4387186647 abstract "ABSTRACTStudent dropout is a major concern in studies investigating retention strategies in higher education. This study identifies which variables are important to predict student dropout, using academic data from 3583 first-year students on the Business Administration (BA) degree at the University of Barcelona (Spain). The results indicate that two variables, the percentage of subjects failed and not attended in the first semester, demonstrate significant predictive power. This has been corroborated with an additional sample of 10,784 students from three-degree programs (Law, BA, and Economics) at the Complutense University of Madrid (Spain), to assess the robustness of the results. Three different algorithms have also been utilized: neural networks, random forest, and logit. In the specific case of neural networks, the NeuralSens methodology has been employed, which is based on the use of sensitivities, allowing for its interpretation. The outcomes are highly consistent in all cases: both a simple model (logit) and more sophisticated ones (neural networks and random forest) exhibit high accuracy (correctly predicted values) and sensitivity (correctly predicted dropouts). In test set average values of 77% and 69% have been respectively achieved. In this regard, a noteworthy point is that only academic data from the university itself was used to develop the models. This ensures that there’s no dependence on other personal or organizational variables, which can often be difficult to access.KEYWORDS: Predictionuniversity dropouteducational data miningacademic performanceneural networks Disclosure statementNo potential conflict of interest was reported by the author(s).Notes1 Other studies, such as that of Lizarte Simón and Gijón Puerta (Citation2022), in this case using a sample of students from Early Childhood, Primary, and Social Education and Pedagogy degree programs, achieve an accuracy of 91%, using predictors derived from a survey that evaluates various academic dimensions. This means, once again, the model requires access to a series of variables that are challenging to obtain.Additional informationFundingThis work was supported by Ministerio de Ciencia e Innovación [grant number: PID202020-116293RB-I00]. The authors would like to thank Universidad Complutense de Madrid (UCM) for the data, which have been obtained from the Integrated Institutional Data System (SIDI)." @default.
- W4387186647 created "2023-09-30" @default.
- W4387186647 creator A5007667849 @default.
- W4387186647 creator A5034330549 @default.
- W4387186647 creator A5077594698 @default.
- W4387186647 creator A5092968953 @default.
- W4387186647 date "2023-09-29" @default.
- W4387186647 modified "2023-09-30" @default.
- W4387186647 title "Early dropout predictors in social sciences and management degree students" @default.
- W4387186647 cites W1971374890 @default.
- W4387186647 cites W1999994673 @default.
- W4387186647 cites W2006617902 @default.
- W4387186647 cites W2009318247 @default.
- W4387186647 cites W2017147628 @default.
- W4387186647 cites W2029600094 @default.
- W4387186647 cites W2039016511 @default.
- W4387186647 cites W2039097746 @default.
- W4387186647 cites W2040555123 @default.
- W4387186647 cites W2050153238 @default.
- W4387186647 cites W2068570490 @default.
- W4387186647 cites W2071919330 @default.
- W4387186647 cites W2081865140 @default.
- W4387186647 cites W2082806330 @default.
- W4387186647 cites W2085599548 @default.
- W4387186647 cites W2107789655 @default.
- W4387186647 cites W2118906764 @default.
- W4387186647 cites W2125224352 @default.
- W4387186647 cites W2129273781 @default.
- W4387186647 cites W2155719227 @default.
- W4387186647 cites W2162897826 @default.
- W4387186647 cites W2340351150 @default.
- W4387186647 cites W2548653736 @default.
- W4387186647 cites W2560293510 @default.
- W4387186647 cites W2574382622 @default.
- W4387186647 cites W2738394817 @default.
- W4387186647 cites W2887592591 @default.
- W4387186647 cites W2898323144 @default.
- W4387186647 cites W2901355627 @default.
- W4387186647 cites W2914619562 @default.
- W4387186647 cites W2920407843 @default.
- W4387186647 cites W2923441838 @default.
- W4387186647 cites W2960460122 @default.
- W4387186647 cites W2964639965 @default.
- W4387186647 cites W3008186662 @default.
- W4387186647 cites W3012398293 @default.
- W4387186647 cites W3012433811 @default.
- W4387186647 cites W3013620967 @default.
- W4387186647 cites W3049502210 @default.
- W4387186647 cites W3081622414 @default.
- W4387186647 cites W3093685893 @default.
- W4387186647 cites W3100188582 @default.
- W4387186647 cites W3151235399 @default.
- W4387186647 cites W3196637034 @default.
- W4387186647 cites W3203763991 @default.
- W4387186647 cites W3205269796 @default.
- W4387186647 cites W3209573395 @default.
- W4387186647 cites W4206633636 @default.
- W4387186647 cites W4214899961 @default.
- W4387186647 cites W4231285115 @default.
- W4387186647 cites W4242546620 @default.
- W4387186647 cites W4254687493 @default.
- W4387186647 cites W4293460716 @default.
- W4387186647 cites W4296209413 @default.
- W4387186647 cites W4296360182 @default.
- W4387186647 cites W4362734928 @default.
- W4387186647 cites W948208351 @default.
- W4387186647 doi "https://doi.org/10.1080/03075079.2023.2264343" @default.
- W4387186647 hasPublicationYear "2023" @default.
- W4387186647 type Work @default.
- W4387186647 citedByCount "0" @default.
- W4387186647 crossrefType "journal-article" @default.
- W4387186647 hasAuthorship W4387186647A5007667849 @default.
- W4387186647 hasAuthorship W4387186647A5034330549 @default.
- W4387186647 hasAuthorship W4387186647A5077594698 @default.
- W4387186647 hasAuthorship W4387186647A5092968953 @default.
- W4387186647 hasConcept C104317684 @default.
- W4387186647 hasConcept C105795698 @default.
- W4387186647 hasConcept C111472728 @default.
- W4387186647 hasConcept C119857082 @default.
- W4387186647 hasConcept C120912362 @default.
- W4387186647 hasConcept C138885662 @default.
- W4387186647 hasConcept C140331021 @default.
- W4387186647 hasConcept C145420912 @default.
- W4387186647 hasConcept C149782125 @default.
- W4387186647 hasConcept C151956035 @default.
- W4387186647 hasConcept C154945302 @default.
- W4387186647 hasConcept C15744967 @default.
- W4387186647 hasConcept C162324750 @default.
- W4387186647 hasConcept C185592680 @default.
- W4387186647 hasConcept C2776145597 @default.
- W4387186647 hasConcept C2778136018 @default.
- W4387186647 hasConcept C33923547 @default.
- W4387186647 hasConcept C41008148 @default.
- W4387186647 hasConcept C50522688 @default.
- W4387186647 hasConcept C50644808 @default.
- W4387186647 hasConcept C55493867 @default.
- W4387186647 hasConcept C63479239 @default.
- W4387186647 hasConceptScore W4387186647C104317684 @default.