Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387187425> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4387187425 endingPage "4088" @default.
- W4387187425 startingPage "4088" @default.
- W4387187425 abstract "Artificial intelligence has been identified as one of the main driving forces of innovation in state-of-the-art mobile and wireless networks. It has enabled many novel usage scenarios, relying on predictive models for increasing network management efficiency. However, its adoption requires additional efforts, such as mastering the terminology, tools, and newly required steps of data importing and preparation, all of which increase the time required for experimentation. Therefore, we aimed to automate the manual steps as much as possible while reducing the overall cognitive load. In this paper, we explore the potential use of a novel Chat Generative Pre-trained Transformer (ChatGPT) conversational agent together with a model-driven approach relying on the Neo4j graph database in order to aid experimentation and analytics in the case of wireless network planning. As a case study, we present a derivation of the expression for the channel capacity (CC) metric in the case of η-µ multipath fading and η-µ co-channel interference. Moreover, the derived expression is leveraged for quality of service (QoS) estimation within the software simulation environment. ChatGPT, in synergy with a model-driven approach, is used to automate several steps: data importing, generation of graph construction, and machine learning-related Neo4j queries. According to the achieved outcomes, the proposed QoS estimation method, based on the derived CC expression (with precision up to the fifth significant digit), demonstrates satisfactory accuracy (up to 98%) and faster training than the deep neural network-based solution. On the other hand, compared to the manual approach based on our previous work, ChatGPT-based code generation reduces the time required for experimentation by more than 4 times." @default.
- W4387187425 created "2023-09-30" @default.
- W4387187425 creator A5039550937 @default.
- W4387187425 creator A5059060384 @default.
- W4387187425 creator A5067093386 @default.
- W4387187425 creator A5088104146 @default.
- W4387187425 date "2023-09-29" @default.
- W4387187425 modified "2023-09-30" @default.
- W4387187425 title "AI-Enabled Framework for Mobile Network Experimentation Leveraging ChatGPT: Case Study of Channel Capacity Calculation for η-µ Fading and Co-Channel Interference" @default.
- W4387187425 cites W1976340877 @default.
- W4387187425 cites W2024267771 @default.
- W4387187425 cites W2054251434 @default.
- W4387187425 cites W2088826565 @default.
- W4387187425 cites W2093291708 @default.
- W4387187425 cites W2099881771 @default.
- W4387187425 cites W2159858623 @default.
- W4387187425 cites W2493309683 @default.
- W4387187425 cites W2887090281 @default.
- W4387187425 cites W2892969899 @default.
- W4387187425 cites W2972963787 @default.
- W4387187425 cites W2979965730 @default.
- W4387187425 cites W2987161494 @default.
- W4387187425 cites W3135855932 @default.
- W4387187425 cites W3209812789 @default.
- W4387187425 cites W4225538110 @default.
- W4387187425 cites W4284972824 @default.
- W4387187425 cites W4295767228 @default.
- W4387187425 cites W4301000707 @default.
- W4387187425 cites W4308655545 @default.
- W4387187425 cites W4383888212 @default.
- W4387187425 cites W842083775 @default.
- W4387187425 doi "https://doi.org/10.3390/electronics12194088" @default.
- W4387187425 hasPublicationYear "2023" @default.
- W4387187425 type Work @default.
- W4387187425 citedByCount "0" @default.
- W4387187425 crossrefType "journal-article" @default.
- W4387187425 hasAuthorship W4387187425A5039550937 @default.
- W4387187425 hasAuthorship W4387187425A5059060384 @default.
- W4387187425 hasAuthorship W4387187425A5067093386 @default.
- W4387187425 hasAuthorship W4387187425A5088104146 @default.
- W4387187425 hasBestOaLocation W43871874251 @default.
- W4387187425 hasConcept C108037233 @default.
- W4387187425 hasConcept C119857082 @default.
- W4387187425 hasConcept C120314980 @default.
- W4387187425 hasConcept C127162648 @default.
- W4387187425 hasConcept C154945302 @default.
- W4387187425 hasConcept C161218011 @default.
- W4387187425 hasConcept C31258907 @default.
- W4387187425 hasConcept C41008148 @default.
- W4387187425 hasConcept C5119721 @default.
- W4387187425 hasConcept C555944384 @default.
- W4387187425 hasConcept C76155785 @default.
- W4387187425 hasConcept C81978471 @default.
- W4387187425 hasConceptScore W4387187425C108037233 @default.
- W4387187425 hasConceptScore W4387187425C119857082 @default.
- W4387187425 hasConceptScore W4387187425C120314980 @default.
- W4387187425 hasConceptScore W4387187425C127162648 @default.
- W4387187425 hasConceptScore W4387187425C154945302 @default.
- W4387187425 hasConceptScore W4387187425C161218011 @default.
- W4387187425 hasConceptScore W4387187425C31258907 @default.
- W4387187425 hasConceptScore W4387187425C41008148 @default.
- W4387187425 hasConceptScore W4387187425C5119721 @default.
- W4387187425 hasConceptScore W4387187425C555944384 @default.
- W4387187425 hasConceptScore W4387187425C76155785 @default.
- W4387187425 hasConceptScore W4387187425C81978471 @default.
- W4387187425 hasIssue "19" @default.
- W4387187425 hasLocation W43871874251 @default.
- W4387187425 hasOpenAccess W4387187425 @default.
- W4387187425 hasPrimaryLocation W43871874251 @default.
- W4387187425 hasRelatedWork W2082587691 @default.
- W4387187425 hasRelatedWork W2372860930 @default.
- W4387187425 hasRelatedWork W2541454370 @default.
- W4387187425 hasRelatedWork W2889222875 @default.
- W4387187425 hasRelatedWork W2894100501 @default.
- W4387187425 hasRelatedWork W2950978186 @default.
- W4387187425 hasRelatedWork W2991743273 @default.
- W4387187425 hasRelatedWork W3021873735 @default.
- W4387187425 hasRelatedWork W4386214771 @default.
- W4387187425 hasRelatedWork W9887407 @default.
- W4387187425 hasVolume "12" @default.
- W4387187425 isParatext "false" @default.
- W4387187425 isRetracted "false" @default.
- W4387187425 workType "article" @default.