Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387188008> ?p ?o ?g. }
- W4387188008 abstract "With the global rise of cardiovascular disease including atherosclerosis, there is a high demand for accurate diagnostic tools that can be used during a short consultation. In view of pathology, abnormal blood flow patterns have been demonstrated to be strong predictors of atherosclerotic lesion incidence, location, progression, and rupture. Prediction of patient-specific blood flow patterns can hence enable fast clinical diagnosis. However, the current state of art for the technique is by employing 3D-imaging-based Computational Fluid Dynamics (CFD). The high computational cost renders these methods impractical. In this work, we present a novel method to expedite the reconstruction of 3D pressure and shear stress fields using a combination of a reduced-order CFD modelling technique together with non-linear regression tools from the Machine Learning (ML) paradigm. Specifically, we develop a proof-of-concept automated pipeline that uses randomised perturbations of an atherosclerotic pig coronary artery to produce a large dataset of unique mesh geometries with variable blood flow. A total of 1,407 geometries were generated from seven reference arteries and were used to simulate blood flow using the CFD solver Abaqus. This CFD dataset was then post-processed using the mesh-domain common-base Proper Orthogonal Decomposition (cPOD) method to obtain Eigen functions and principal coefficients, the latter of which is a product of the individual mesh flow solutions with the POD Eigenvectors. Being a data-reduction method, the POD enables the data to be represented using only the ten most significant modes, which captures cumulatively greater than 95% of variance of flow features due to mesh variations. Next, the node coordinate data of the meshes were embedded in a two-dimensional coordinate system using the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm. The reduced dataset for t-SNE coordinates and corresponding vector of POD coefficients were then used to train a Random Forest Regressor (RFR) model. The same methodology was applied to both the volumetric pressure solution and the wall shear stress. The predicted pattern of blood pressure, and shear stress in unseen arterial geometries were compared with the ground truth CFD solutions on unseen meshes. The new method was able to reliably reproduce the 3D coronary artery haemodynamics in less than 10 s." @default.
- W4387188008 created "2023-09-30" @default.
- W4387188008 creator A5019970528 @default.
- W4387188008 creator A5025528254 @default.
- W4387188008 creator A5026975494 @default.
- W4387188008 creator A5035908602 @default.
- W4387188008 creator A5040187736 @default.
- W4387188008 creator A5050124666 @default.
- W4387188008 creator A5063210480 @default.
- W4387188008 creator A5064201118 @default.
- W4387188008 creator A5070797735 @default.
- W4387188008 creator A5081118603 @default.
- W4387188008 creator A5092487838 @default.
- W4387188008 creator A5092487878 @default.
- W4387188008 date "2023-09-29" @default.
- W4387188008 modified "2023-10-18" @default.
- W4387188008 title "A physics-based machine learning technique rapidly reconstructs the wall-shear stress and pressure fields in coronary arteries" @default.
- W4387188008 cites W1954143223 @default.
- W4387188008 cites W2039030115 @default.
- W4387188008 cites W2115533377 @default.
- W4387188008 cites W2128033325 @default.
- W4387188008 cites W2396817 @default.
- W4387188008 cites W2897859939 @default.
- W4387188008 cites W2911964244 @default.
- W4387188008 cites W2990240688 @default.
- W4387188008 cites W3003922491 @default.
- W4387188008 cites W3039084496 @default.
- W4387188008 cites W3044112866 @default.
- W4387188008 cites W3090745866 @default.
- W4387188008 cites W3099211663 @default.
- W4387188008 cites W3104179623 @default.
- W4387188008 cites W3217640134 @default.
- W4387188008 cites W4224221843 @default.
- W4387188008 cites W4307269789 @default.
- W4387188008 cites W4362585006 @default.
- W4387188008 cites W4366817211 @default.
- W4387188008 cites W4367176123 @default.
- W4387188008 cites W4383998987 @default.
- W4387188008 doi "https://doi.org/10.3389/fcvm.2023.1221541" @default.
- W4387188008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37840962" @default.
- W4387188008 hasPublicationYear "2023" @default.
- W4387188008 type Work @default.
- W4387188008 citedByCount "0" @default.
- W4387188008 crossrefType "journal-article" @default.
- W4387188008 hasAuthorship W4387188008A5019970528 @default.
- W4387188008 hasAuthorship W4387188008A5025528254 @default.
- W4387188008 hasAuthorship W4387188008A5026975494 @default.
- W4387188008 hasAuthorship W4387188008A5035908602 @default.
- W4387188008 hasAuthorship W4387188008A5040187736 @default.
- W4387188008 hasAuthorship W4387188008A5050124666 @default.
- W4387188008 hasAuthorship W4387188008A5063210480 @default.
- W4387188008 hasAuthorship W4387188008A5064201118 @default.
- W4387188008 hasAuthorship W4387188008A5070797735 @default.
- W4387188008 hasAuthorship W4387188008A5081118603 @default.
- W4387188008 hasAuthorship W4387188008A5092487838 @default.
- W4387188008 hasAuthorship W4387188008A5092487878 @default.
- W4387188008 hasBestOaLocation W43871880081 @default.
- W4387188008 hasConcept C11413529 @default.
- W4387188008 hasConcept C121332964 @default.
- W4387188008 hasConcept C154945302 @default.
- W4387188008 hasConcept C158846371 @default.
- W4387188008 hasConcept C1633027 @default.
- W4387188008 hasConcept C164705383 @default.
- W4387188008 hasConcept C199360897 @default.
- W4387188008 hasConcept C21141959 @default.
- W4387188008 hasConcept C2776820930 @default.
- W4387188008 hasConcept C2778213512 @default.
- W4387188008 hasConcept C2778742706 @default.
- W4387188008 hasConcept C2778770139 @default.
- W4387188008 hasConcept C41008148 @default.
- W4387188008 hasConcept C57879066 @default.
- W4387188008 hasConcept C71924100 @default.
- W4387188008 hasConceptScore W4387188008C11413529 @default.
- W4387188008 hasConceptScore W4387188008C121332964 @default.
- W4387188008 hasConceptScore W4387188008C154945302 @default.
- W4387188008 hasConceptScore W4387188008C158846371 @default.
- W4387188008 hasConceptScore W4387188008C1633027 @default.
- W4387188008 hasConceptScore W4387188008C164705383 @default.
- W4387188008 hasConceptScore W4387188008C199360897 @default.
- W4387188008 hasConceptScore W4387188008C21141959 @default.
- W4387188008 hasConceptScore W4387188008C2776820930 @default.
- W4387188008 hasConceptScore W4387188008C2778213512 @default.
- W4387188008 hasConceptScore W4387188008C2778742706 @default.
- W4387188008 hasConceptScore W4387188008C2778770139 @default.
- W4387188008 hasConceptScore W4387188008C41008148 @default.
- W4387188008 hasConceptScore W4387188008C57879066 @default.
- W4387188008 hasConceptScore W4387188008C71924100 @default.
- W4387188008 hasLocation W43871880081 @default.
- W4387188008 hasLocation W43871880082 @default.
- W4387188008 hasOpenAccess W4387188008 @default.
- W4387188008 hasPrimaryLocation W43871880081 @default.
- W4387188008 hasRelatedWork W2006186928 @default.
- W4387188008 hasRelatedWork W2071257806 @default.
- W4387188008 hasRelatedWork W2134632713 @default.
- W4387188008 hasRelatedWork W2189586792 @default.
- W4387188008 hasRelatedWork W2275426735 @default.
- W4387188008 hasRelatedWork W2583171488 @default.
- W4387188008 hasRelatedWork W2902248750 @default.
- W4387188008 hasRelatedWork W3013964649 @default.
- W4387188008 hasRelatedWork W4386420887 @default.