Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387189922> ?p ?o ?g. }
- W4387189922 endingPage "102936" @default.
- W4387189922 startingPage "102936" @default.
- W4387189922 abstract "Age prediction from DNA has been a topic of interest in recent years due to the promising results obtained when using epigenetic markers. Since DNA methylation gradually changes across the individual's lifetime, prediction models have been developed accordingly for age estimation. The tissue-dependence for this biomarker usually necessitates the development of tissue-specific age prediction models, in this way, multiple models for age inference have been constructed for the most commonly encountered forensic tissues (blood, oral mucosa, semen). The analysis of skeletal remains has also been attempted and prediction models for bone have now been reported. Recently, the VISAGE Enhanced Tool was developed for the simultaneous DNA methylation analysis of 8 age-correlated loci using targeted high-throughput sequencing. It has been shown that this method is compatible with epigenetic age estimation models for blood, buccal cells, and bone. Since when dealing with decomposed cadavers or postmortem samples, cartilage samples are also an important biological source, an age prediction model for cartilage has been generated in the present study based on methylation data collected using the VISAGE Enhanced Tool. In this way, we have developed a forensic cartilage age prediction model using a training set composed of 109 samples (19-74 age range) based on DNA methylation levels from three CpGs in FHL2, TRIM59 and KLF14, using multivariate quantile regression which provides a mean absolute error (MAE) of ± 4.41 years. An independent testing set composed of 72 samples (19-75 age range) was also analyzed and provided an MAE of ± 4.26 years. In addition, we demonstrate that the 8 VISAGE markers, comprising EDARADD, TRIM59, ELOVL2, MIR29B2CHG, PDE4C, ASPA, FHL2 and KLF14, can be used as tissue prediction markers which provide reliable blood, buccal cells, bone, and cartilage differentiation using a developed multinomial logistic regression model. A training set composed of 392 samples (n = 87 blood, n = 86 buccal cells, n = 110 bone and n = 109 cartilage) was used for building the model (correct classifications: 98.72%, sensitivity: 0.988, specificity: 0.996) and validation was performed using a testing set composed of 192 samples (n = 38 blood, n = 36 buccal cells, n = 46 bone and n = 72 cartilage) showing similar predictive success to the training set (correct classifications: 97.4%, sensitivity: 0.968, specificity: 0.991). By developing both a new cartilage age model and a tissue differentiation model, our study significantly expands the use of the VISAGE Enhanced Tool while increasing the amount of DNA methylation-based information obtained from a single sample and a single forensic laboratory analysis. Both models have been placed in the open-access Snipper forensic classification website." @default.
- W4387189922 created "2023-09-30" @default.
- W4387189922 creator A5007975306 @default.
- W4387189922 creator A5018421591 @default.
- W4387189922 creator A5028487341 @default.
- W4387189922 creator A5029929961 @default.
- W4387189922 creator A5036911813 @default.
- W4387189922 creator A5044821516 @default.
- W4387189922 creator A5048397194 @default.
- W4387189922 creator A5052120847 @default.
- W4387189922 creator A5053393913 @default.
- W4387189922 creator A5053442646 @default.
- W4387189922 creator A5054937522 @default.
- W4387189922 creator A5067444810 @default.
- W4387189922 creator A5075657900 @default.
- W4387189922 date "2023-11-01" @default.
- W4387189922 modified "2023-10-18" @default.
- W4387189922 title "Development of an epigenetic age predictor for costal cartilage with a simultaneous somatic tissue differentiation system" @default.
- W4387189922 cites W1546691149 @default.
- W4387189922 cites W1639076783 @default.
- W4387189922 cites W1692222554 @default.
- W4387189922 cites W1921902554 @default.
- W4387189922 cites W1974047233 @default.
- W4387189922 cites W1979876899 @default.
- W4387189922 cites W1987211940 @default.
- W4387189922 cites W1991141419 @default.
- W4387189922 cites W1993791019 @default.
- W4387189922 cites W2023311117 @default.
- W4387189922 cites W2028099621 @default.
- W4387189922 cites W2033191339 @default.
- W4387189922 cites W2104597750 @default.
- W4387189922 cites W2107508087 @default.
- W4387189922 cites W2140084445 @default.
- W4387189922 cites W2158552988 @default.
- W4387189922 cites W2163621799 @default.
- W4387189922 cites W2254832594 @default.
- W4387189922 cites W2606184024 @default.
- W4387189922 cites W2611986683 @default.
- W4387189922 cites W2773903660 @default.
- W4387189922 cites W2783797625 @default.
- W4387189922 cites W2894586046 @default.
- W4387189922 cites W2915054923 @default.
- W4387189922 cites W2939923516 @default.
- W4387189922 cites W3006019475 @default.
- W4387189922 cites W3038787132 @default.
- W4387189922 cites W3044717186 @default.
- W4387189922 cites W3111605427 @default.
- W4387189922 cites W3111907146 @default.
- W4387189922 cites W3135248712 @default.
- W4387189922 cites W3135723670 @default.
- W4387189922 cites W3148056352 @default.
- W4387189922 cites W3164136806 @default.
- W4387189922 cites W3184487061 @default.
- W4387189922 cites W3189556913 @default.
- W4387189922 cites W3201365346 @default.
- W4387189922 cites W3209337520 @default.
- W4387189922 cites W4200564280 @default.
- W4387189922 cites W4283523281 @default.
- W4387189922 cites W4285595126 @default.
- W4387189922 cites W4293339927 @default.
- W4387189922 cites W4303644389 @default.
- W4387189922 cites W4309737123 @default.
- W4387189922 doi "https://doi.org/10.1016/j.fsigen.2023.102936" @default.
- W4387189922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37783021" @default.
- W4387189922 hasPublicationYear "2023" @default.
- W4387189922 type Work @default.
- W4387189922 citedByCount "0" @default.
- W4387189922 crossrefType "journal-article" @default.
- W4387189922 hasAuthorship W4387189922A5007975306 @default.
- W4387189922 hasAuthorship W4387189922A5018421591 @default.
- W4387189922 hasAuthorship W4387189922A5028487341 @default.
- W4387189922 hasAuthorship W4387189922A5029929961 @default.
- W4387189922 hasAuthorship W4387189922A5036911813 @default.
- W4387189922 hasAuthorship W4387189922A5044821516 @default.
- W4387189922 hasAuthorship W4387189922A5048397194 @default.
- W4387189922 hasAuthorship W4387189922A5052120847 @default.
- W4387189922 hasAuthorship W4387189922A5053393913 @default.
- W4387189922 hasAuthorship W4387189922A5053442646 @default.
- W4387189922 hasAuthorship W4387189922A5054937522 @default.
- W4387189922 hasAuthorship W4387189922A5067444810 @default.
- W4387189922 hasAuthorship W4387189922A5075657900 @default.
- W4387189922 hasConcept C104317684 @default.
- W4387189922 hasConcept C105702510 @default.
- W4387189922 hasConcept C119857082 @default.
- W4387189922 hasConcept C150194340 @default.
- W4387189922 hasConcept C161584116 @default.
- W4387189922 hasConcept C167871757 @default.
- W4387189922 hasConcept C190727270 @default.
- W4387189922 hasConcept C2780550940 @default.
- W4387189922 hasConcept C2991747559 @default.
- W4387189922 hasConcept C33288867 @default.
- W4387189922 hasConcept C41008148 @default.
- W4387189922 hasConcept C41091548 @default.
- W4387189922 hasConcept C54355233 @default.
- W4387189922 hasConcept C552990157 @default.
- W4387189922 hasConcept C60644358 @default.
- W4387189922 hasConcept C70721500 @default.
- W4387189922 hasConcept C78458016 @default.