Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387190914> ?p ?o ?g. }
- W4387190914 endingPage "139069" @default.
- W4387190914 startingPage "139069" @default.
- W4387190914 abstract "Driven by the global Sustainable Development Goals, predicting the long-term trend of carbon emissions in the industrial sector has important reference value for managing national macroeconomic and reducing carbon emissions. To address the potential privacy leakage problem when using multisource industrial big data for carbon emission prediction, a federated learning method was introduced for carbon emission prediction research. However, owing to the variability in individual data providers, using all clients indiscriminately to train the federated model may hinder the computational efficiency of federated learning. To improve the accuracy and computational efficiency of the prediction model, a federated learning method based on SARIMA clustering was proposed. First, a trend was fitted to all clients based on the SARIMA model and the clients were grouped into different clusters based on the fitting results. Second, a federated bidirectional long short-term memory calculation was implemented for different client combinations using a federated averaging algorithm. Extensive experimental results on real datasets show that combining SARIMA and the federated averaging algorithm protects the data privacy of clients and improves the convergence speed and accuracy of the federated learning carbon emission prediction model. Within the optimal set of clusters (Cluster 0), the mean absolute error and mean square error improved by 63.32% and 79.27%, respectively, and the convergence speed of the model improved by 73.17%. This study further enriches the methodological system of carbon emission prediction and provides methodological support for relevant departments to use multisource big data in the industry for carbon emission prediction." @default.
- W4387190914 created "2023-09-30" @default.
- W4387190914 creator A5016260156 @default.
- W4387190914 creator A5021918980 @default.
- W4387190914 creator A5025367222 @default.
- W4387190914 creator A5039185384 @default.
- W4387190914 creator A5079415887 @default.
- W4387190914 date "2023-11-01" @default.
- W4387190914 modified "2023-10-18" @default.
- W4387190914 title "Federated learning with SARIMA-based clustering for carbon emission prediction" @default.
- W4387190914 cites W1519616569 @default.
- W4387190914 cites W1600968722 @default.
- W4387190914 cites W2054379763 @default.
- W4387190914 cites W2726216118 @default.
- W4387190914 cites W2766318201 @default.
- W4387190914 cites W2791217703 @default.
- W4387190914 cites W2896532220 @default.
- W4387190914 cites W2912213068 @default.
- W4387190914 cites W2944851425 @default.
- W4387190914 cites W2950990727 @default.
- W4387190914 cites W2975040027 @default.
- W4387190914 cites W2975108999 @default.
- W4387190914 cites W3010852232 @default.
- W4387190914 cites W3018464563 @default.
- W4387190914 cites W3042839384 @default.
- W4387190914 cites W3092568511 @default.
- W4387190914 cites W3106264152 @default.
- W4387190914 cites W3106378891 @default.
- W4387190914 cites W3164193355 @default.
- W4387190914 cites W3202515873 @default.
- W4387190914 cites W4205245734 @default.
- W4387190914 cites W4224305731 @default.
- W4387190914 cites W4235411281 @default.
- W4387190914 cites W4288045224 @default.
- W4387190914 cites W4294106961 @default.
- W4387190914 cites W4304183752 @default.
- W4387190914 cites W4318989734 @default.
- W4387190914 doi "https://doi.org/10.1016/j.jclepro.2023.139069" @default.
- W4387190914 hasPublicationYear "2023" @default.
- W4387190914 type Work @default.
- W4387190914 citedByCount "0" @default.
- W4387190914 crossrefType "journal-article" @default.
- W4387190914 hasAuthorship W4387190914A5016260156 @default.
- W4387190914 hasAuthorship W4387190914A5021918980 @default.
- W4387190914 hasAuthorship W4387190914A5025367222 @default.
- W4387190914 hasAuthorship W4387190914A5039185384 @default.
- W4387190914 hasAuthorship W4387190914A5079415887 @default.
- W4387190914 hasConcept C105795698 @default.
- W4387190914 hasConcept C119857082 @default.
- W4387190914 hasConcept C124101348 @default.
- W4387190914 hasConcept C139945424 @default.
- W4387190914 hasConcept C150217764 @default.
- W4387190914 hasConcept C154945302 @default.
- W4387190914 hasConcept C162324750 @default.
- W4387190914 hasConcept C177264268 @default.
- W4387190914 hasConcept C199360897 @default.
- W4387190914 hasConcept C2777303404 @default.
- W4387190914 hasConcept C2992525071 @default.
- W4387190914 hasConcept C33923547 @default.
- W4387190914 hasConcept C41008148 @default.
- W4387190914 hasConcept C50522688 @default.
- W4387190914 hasConcept C50644808 @default.
- W4387190914 hasConcept C73555534 @default.
- W4387190914 hasConcept C75684735 @default.
- W4387190914 hasConceptScore W4387190914C105795698 @default.
- W4387190914 hasConceptScore W4387190914C119857082 @default.
- W4387190914 hasConceptScore W4387190914C124101348 @default.
- W4387190914 hasConceptScore W4387190914C139945424 @default.
- W4387190914 hasConceptScore W4387190914C150217764 @default.
- W4387190914 hasConceptScore W4387190914C154945302 @default.
- W4387190914 hasConceptScore W4387190914C162324750 @default.
- W4387190914 hasConceptScore W4387190914C177264268 @default.
- W4387190914 hasConceptScore W4387190914C199360897 @default.
- W4387190914 hasConceptScore W4387190914C2777303404 @default.
- W4387190914 hasConceptScore W4387190914C2992525071 @default.
- W4387190914 hasConceptScore W4387190914C33923547 @default.
- W4387190914 hasConceptScore W4387190914C41008148 @default.
- W4387190914 hasConceptScore W4387190914C50522688 @default.
- W4387190914 hasConceptScore W4387190914C50644808 @default.
- W4387190914 hasConceptScore W4387190914C73555534 @default.
- W4387190914 hasConceptScore W4387190914C75684735 @default.
- W4387190914 hasFunder F4320327557 @default.
- W4387190914 hasFunder F4320327785 @default.
- W4387190914 hasFunder F4320335774 @default.
- W4387190914 hasLocation W43871909141 @default.
- W4387190914 hasOpenAccess W4387190914 @default.
- W4387190914 hasPrimaryLocation W43871909141 @default.
- W4387190914 hasRelatedWork W2039947585 @default.
- W4387190914 hasRelatedWork W3111532652 @default.
- W4387190914 hasRelatedWork W3178576217 @default.
- W4387190914 hasRelatedWork W4210644201 @default.
- W4387190914 hasRelatedWork W4255385072 @default.
- W4387190914 hasRelatedWork W4283367183 @default.
- W4387190914 hasRelatedWork W4285102093 @default.
- W4387190914 hasRelatedWork W4318676890 @default.
- W4387190914 hasRelatedWork W4381189085 @default.
- W4387190914 hasRelatedWork W4385195237 @default.
- W4387190914 hasVolume "426" @default.