Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387191570> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4387191570 abstract "The adopting of cashless payment methods, such as credit card payments and online transactions, has significantly enhanced the payment experience and added convenience to our daily lives. However, with the increase in cashless payment usage, financial fraud has become more sophisticated, posing a significant challenge to the security of these payment systems. In response, machine learning-based approaches have gained popularity in fraud detection. In this research paper, we propose the application of a deep tabular learning model, TabNet, for classifying transactions into fraudulent or non-fraudulent categories. TabNet utilizes a sequential attention mechanism to learn from tabular data. It comprises a series of decision steps where each step selects relevant features and updates the internal representation of the data. This mechanism enables the model to effectively capture complex, non-linear relationships between features, making it highly effective for fraud detection. The utilization of TabNet in fraud detection can contribute to strengthening the security of the payment system and reduce the chance of financial fraud. To evaluate the efficacy of our proposed approach, we conducted experiments on three widely used credit card fraud datasets, including the MLG-ULB dataset, the IEEE-CIS Fraud dataset, and the 10M dataset. Our experiments revealed that TabNet outperforms the state-of-the-art approaches across all three datasets, demonstrating its robustness and effectiveness in detecting fraudulent transactions." @default.
- W4387191570 created "2023-09-30" @default.
- W4387191570 creator A5008658846 @default.
- W4387191570 creator A5017532046 @default.
- W4387191570 creator A5050262124 @default.
- W4387191570 creator A5086127398 @default.
- W4387191570 date "2023-08-23" @default.
- W4387191570 modified "2023-09-30" @default.
- W4387191570 title "Credit Card Fraud Detection using TabNet" @default.
- W4387191570 cites W2148143831 @default.
- W4387191570 cites W2162772535 @default.
- W4387191570 cites W2786146442 @default.
- W4387191570 cites W2946712695 @default.
- W4387191570 cites W2958026736 @default.
- W4387191570 cites W2980576170 @default.
- W4387191570 cites W3023003778 @default.
- W4387191570 cites W3108389074 @default.
- W4387191570 cites W4289172806 @default.
- W4387191570 cites W4297094638 @default.
- W4387191570 doi "https://doi.org/10.1109/icoict58202.2023.10262711" @default.
- W4387191570 hasPublicationYear "2023" @default.
- W4387191570 type Work @default.
- W4387191570 citedByCount "0" @default.
- W4387191570 crossrefType "proceedings-article" @default.
- W4387191570 hasAuthorship W4387191570A5008658846 @default.
- W4387191570 hasAuthorship W4387191570A5017532046 @default.
- W4387191570 hasAuthorship W4387191570A5050262124 @default.
- W4387191570 hasAuthorship W4387191570A5086127398 @default.
- W4387191570 hasConcept C104317684 @default.
- W4387191570 hasConcept C119857082 @default.
- W4387191570 hasConcept C124101348 @default.
- W4387191570 hasConcept C136764020 @default.
- W4387191570 hasConcept C145097563 @default.
- W4387191570 hasConcept C154945302 @default.
- W4387191570 hasConcept C15744967 @default.
- W4387191570 hasConcept C164516710 @default.
- W4387191570 hasConcept C185592680 @default.
- W4387191570 hasConcept C21021354 @default.
- W4387191570 hasConcept C2776983043 @default.
- W4387191570 hasConcept C2780586970 @default.
- W4387191570 hasConcept C2780747020 @default.
- W4387191570 hasConcept C2983355114 @default.
- W4387191570 hasConcept C38652104 @default.
- W4387191570 hasConcept C41008148 @default.
- W4387191570 hasConcept C55493867 @default.
- W4387191570 hasConcept C63479239 @default.
- W4387191570 hasConcept C75949130 @default.
- W4387191570 hasConcept C77088390 @default.
- W4387191570 hasConcept C77805123 @default.
- W4387191570 hasConceptScore W4387191570C104317684 @default.
- W4387191570 hasConceptScore W4387191570C119857082 @default.
- W4387191570 hasConceptScore W4387191570C124101348 @default.
- W4387191570 hasConceptScore W4387191570C136764020 @default.
- W4387191570 hasConceptScore W4387191570C145097563 @default.
- W4387191570 hasConceptScore W4387191570C154945302 @default.
- W4387191570 hasConceptScore W4387191570C15744967 @default.
- W4387191570 hasConceptScore W4387191570C164516710 @default.
- W4387191570 hasConceptScore W4387191570C185592680 @default.
- W4387191570 hasConceptScore W4387191570C21021354 @default.
- W4387191570 hasConceptScore W4387191570C2776983043 @default.
- W4387191570 hasConceptScore W4387191570C2780586970 @default.
- W4387191570 hasConceptScore W4387191570C2780747020 @default.
- W4387191570 hasConceptScore W4387191570C2983355114 @default.
- W4387191570 hasConceptScore W4387191570C38652104 @default.
- W4387191570 hasConceptScore W4387191570C41008148 @default.
- W4387191570 hasConceptScore W4387191570C55493867 @default.
- W4387191570 hasConceptScore W4387191570C63479239 @default.
- W4387191570 hasConceptScore W4387191570C75949130 @default.
- W4387191570 hasConceptScore W4387191570C77088390 @default.
- W4387191570 hasConceptScore W4387191570C77805123 @default.
- W4387191570 hasFunder F4320321147 @default.
- W4387191570 hasLocation W43871915701 @default.
- W4387191570 hasOpenAccess W4387191570 @default.
- W4387191570 hasPrimaryLocation W43871915701 @default.
- W4387191570 hasRelatedWork W2066423109 @default.
- W4387191570 hasRelatedWork W2273299002 @default.
- W4387191570 hasRelatedWork W2405672597 @default.
- W4387191570 hasRelatedWork W2592941042 @default.
- W4387191570 hasRelatedWork W2770474173 @default.
- W4387191570 hasRelatedWork W2966662166 @default.
- W4387191570 hasRelatedWork W3017442345 @default.
- W4387191570 hasRelatedWork W4220924206 @default.
- W4387191570 hasRelatedWork W4283209178 @default.
- W4387191570 hasRelatedWork W4387191570 @default.
- W4387191570 isParatext "false" @default.
- W4387191570 isRetracted "false" @default.
- W4387191570 workType "article" @default.