Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387195267> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4387195267 endingPage "653" @default.
- W4387195267 startingPage "638" @default.
- W4387195267 abstract "This study aims to develop and compare different AI systems for predicting solar radiation and evaluate their performance across different prediction horizons. Predicting solar radiation is of crucial importance for harnessing renewable energy sources. The models were designed to predict radiation over 6-h and 15-min horizons with the lowest possible error. The impact of prediction horizon and data acquisition frequency on prediction accuracy is discussed, emphasizing the need to consider the number of parameters and training time when comparing models. To improve the accuracy of short-term solar radiation predictions, five deep learning models, including classical, convolutional, and recurrent neural networks, were analyzed. The accuracy of the predictions was compared using two error metrics: root mean square error and mean absolute error." @default.
- W4387195267 created "2023-09-30" @default.
- W4387195267 creator A5003955516 @default.
- W4387195267 creator A5090939243 @default.
- W4387195267 date "2023-01-01" @default.
- W4387195267 modified "2023-09-30" @default.
- W4387195267 title "Deep Learning for the Analysis of Solar Radiation Prediction with Different Time Horizons and Data Acquisition Frequencies" @default.
- W4387195267 cites W1566256432 @default.
- W4387195267 cites W1966490307 @default.
- W4387195267 cites W1977177161 @default.
- W4387195267 cites W2003706483 @default.
- W4387195267 cites W2005317010 @default.
- W4387195267 cites W2024787682 @default.
- W4387195267 cites W2102148524 @default.
- W4387195267 cites W2268617045 @default.
- W4387195267 cites W2789876780 @default.
- W4387195267 cites W2963121266 @default.
- W4387195267 cites W2987867641 @default.
- W4387195267 cites W3024761859 @default.
- W4387195267 cites W3137688634 @default.
- W4387195267 cites W3214840804 @default.
- W4387195267 cites W4205979752 @default.
- W4387195267 cites W4206098628 @default.
- W4387195267 cites W4221088249 @default.
- W4387195267 cites W4281637857 @default.
- W4387195267 cites W4315701561 @default.
- W4387195267 cites W4317436852 @default.
- W4387195267 cites W4321377293 @default.
- W4387195267 cites W4322746288 @default.
- W4387195267 doi "https://doi.org/10.1007/978-3-031-43085-5_51" @default.
- W4387195267 hasPublicationYear "2023" @default.
- W4387195267 type Work @default.
- W4387195267 citedByCount "0" @default.
- W4387195267 crossrefType "book-chapter" @default.
- W4387195267 hasAuthorship W4387195267A5003955516 @default.
- W4387195267 hasAuthorship W4387195267A5090939243 @default.
- W4387195267 hasConcept C105795698 @default.
- W4387195267 hasConcept C119857082 @default.
- W4387195267 hasConcept C120665830 @default.
- W4387195267 hasConcept C121332964 @default.
- W4387195267 hasConcept C139945424 @default.
- W4387195267 hasConcept C153385146 @default.
- W4387195267 hasConcept C154945302 @default.
- W4387195267 hasConcept C167085575 @default.
- W4387195267 hasConcept C188154048 @default.
- W4387195267 hasConcept C33923547 @default.
- W4387195267 hasConcept C41008148 @default.
- W4387195267 hasConcept C50644808 @default.
- W4387195267 hasConcept C81363708 @default.
- W4387195267 hasConceptScore W4387195267C105795698 @default.
- W4387195267 hasConceptScore W4387195267C119857082 @default.
- W4387195267 hasConceptScore W4387195267C120665830 @default.
- W4387195267 hasConceptScore W4387195267C121332964 @default.
- W4387195267 hasConceptScore W4387195267C139945424 @default.
- W4387195267 hasConceptScore W4387195267C153385146 @default.
- W4387195267 hasConceptScore W4387195267C154945302 @default.
- W4387195267 hasConceptScore W4387195267C167085575 @default.
- W4387195267 hasConceptScore W4387195267C188154048 @default.
- W4387195267 hasConceptScore W4387195267C33923547 @default.
- W4387195267 hasConceptScore W4387195267C41008148 @default.
- W4387195267 hasConceptScore W4387195267C50644808 @default.
- W4387195267 hasConceptScore W4387195267C81363708 @default.
- W4387195267 hasLocation W43871952671 @default.
- W4387195267 hasOpenAccess W4387195267 @default.
- W4387195267 hasPrimaryLocation W43871952671 @default.
- W4387195267 hasRelatedWork W2099878889 @default.
- W4387195267 hasRelatedWork W2188032833 @default.
- W4387195267 hasRelatedWork W2767026677 @default.
- W4387195267 hasRelatedWork W2807954395 @default.
- W4387195267 hasRelatedWork W2971305136 @default.
- W4387195267 hasRelatedWork W2995227436 @default.
- W4387195267 hasRelatedWork W3021430260 @default.
- W4387195267 hasRelatedWork W3027997911 @default.
- W4387195267 hasRelatedWork W3159033086 @default.
- W4387195267 hasRelatedWork W4287776258 @default.
- W4387195267 isParatext "false" @default.
- W4387195267 isRetracted "false" @default.
- W4387195267 workType "book-chapter" @default.