Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387203875> ?p ?o ?g. }
- W4387203875 endingPage "133540" @default.
- W4387203875 startingPage "133540" @default.
- W4387203875 abstract "This research aimed to build estimation models for the compressive strength (C-S) of cement mortar containing eggshell and glass powder after the acid attack using machine learning algorithms. A lab test data comprising 234 data points with 8 input factors was utilised for modelling. Four ensemble machine learning techniques, including gradient boosting, AdaBoost, random forest, and bagging, were employed to achieve the research's goals. In addition, to examine the influence and correlation of input factors, a SHapley Additive exExplanations (SHAP) analysis was conducted. The built estimation models well agreed with the lab test results based on R2 and the variance between actual and model estimated results (errors). Random forest and bagging exhibited superior prediction performance, with R2 of 0.982 and 0.983, respectively, than gradient boosting and AdaBoost, with R2 of 0.969 and 0.977, respectively. The comparative analysis of statistical measures also indicated superior accuracy of random forest and bagging, with mean absolute percentage error (MAPE) of 2.40%, than gradient boosting and AdaBoost, with MAPE of 2.90% and 2.60%, respectively. SHAP analysis exhibited that the highly influential factor for the acid resistance of glass and eggshell-based mortar was the 90-day C-S of the sample, followed by the quantity of glass powder, eggshell powder, sand, cement, water, superplasticizer, and silica fume." @default.
- W4387203875 created "2023-09-30" @default.
- W4387203875 creator A5007452190 @default.
- W4387203875 creator A5015198150 @default.
- W4387203875 creator A5024576451 @default.
- W4387203875 creator A5053593782 @default.
- W4387203875 creator A5076652365 @default.
- W4387203875 creator A5089128517 @default.
- W4387203875 date "2023-12-01" @default.
- W4387203875 modified "2023-10-14" @default.
- W4387203875 title "A soft-computing-based modeling approach for predicting acid resistance of waste-derived cementitious composites" @default.
- W4387203875 cites W2030078347 @default.
- W4387203875 cites W2036935895 @default.
- W4387203875 cites W2044101778 @default.
- W4387203875 cites W2102539288 @default.
- W4387203875 cites W2168555187 @default.
- W4387203875 cites W2344945034 @default.
- W4387203875 cites W2487898712 @default.
- W4387203875 cites W2509920569 @default.
- W4387203875 cites W2759453020 @default.
- W4387203875 cites W2769174254 @default.
- W4387203875 cites W2810674796 @default.
- W4387203875 cites W2925700532 @default.
- W4387203875 cites W3001709238 @default.
- W4387203875 cites W3011574030 @default.
- W4387203875 cites W3037548423 @default.
- W4387203875 cites W3038033549 @default.
- W4387203875 cites W3042464309 @default.
- W4387203875 cites W3044395723 @default.
- W4387203875 cites W3045004532 @default.
- W4387203875 cites W3049479730 @default.
- W4387203875 cites W3087991416 @default.
- W4387203875 cites W3092915614 @default.
- W4387203875 cites W3093895805 @default.
- W4387203875 cites W3094556934 @default.
- W4387203875 cites W3125850143 @default.
- W4387203875 cites W3126997349 @default.
- W4387203875 cites W3140990481 @default.
- W4387203875 cites W3147587926 @default.
- W4387203875 cites W3159571581 @default.
- W4387203875 cites W3161638567 @default.
- W4387203875 cites W3169354281 @default.
- W4387203875 cites W3172891032 @default.
- W4387203875 cites W3176177428 @default.
- W4387203875 cites W3181524627 @default.
- W4387203875 cites W3182063184 @default.
- W4387203875 cites W3202180088 @default.
- W4387203875 cites W3204631755 @default.
- W4387203875 cites W3207726446 @default.
- W4387203875 cites W3209858780 @default.
- W4387203875 cites W3217253818 @default.
- W4387203875 cites W4210750266 @default.
- W4387203875 cites W4220993526 @default.
- W4387203875 cites W4223416629 @default.
- W4387203875 cites W4223591592 @default.
- W4387203875 cites W4223602733 @default.
- W4387203875 cites W4224232577 @default.
- W4387203875 cites W4224282170 @default.
- W4387203875 cites W4225008495 @default.
- W4387203875 cites W4225117931 @default.
- W4387203875 cites W4225289294 @default.
- W4387203875 cites W4280548161 @default.
- W4387203875 cites W4281262482 @default.
- W4387203875 cites W4281479674 @default.
- W4387203875 cites W4281552284 @default.
- W4387203875 cites W4281612112 @default.
- W4387203875 cites W4281766689 @default.
- W4387203875 cites W4283208681 @default.
- W4387203875 cites W4292158997 @default.
- W4387203875 cites W4292260058 @default.
- W4387203875 cites W4293069875 @default.
- W4387203875 cites W4293766299 @default.
- W4387203875 cites W4295014352 @default.
- W4387203875 cites W4304183819 @default.
- W4387203875 cites W4306937574 @default.
- W4387203875 cites W4308348734 @default.
- W4387203875 cites W4313706061 @default.
- W4387203875 cites W4317780800 @default.
- W4387203875 cites W4322742977 @default.
- W4387203875 cites W4366818169 @default.
- W4387203875 cites W4367841079 @default.
- W4387203875 cites W4376112708 @default.
- W4387203875 cites W4376647515 @default.
- W4387203875 cites W4379160940 @default.
- W4387203875 cites W4382044921 @default.
- W4387203875 cites W4382360820 @default.
- W4387203875 cites W795064871 @default.
- W4387203875 doi "https://doi.org/10.1016/j.conbuildmat.2023.133540" @default.
- W4387203875 hasPublicationYear "2023" @default.
- W4387203875 type Work @default.
- W4387203875 citedByCount "0" @default.
- W4387203875 crossrefType "journal-article" @default.
- W4387203875 hasAuthorship W4387203875A5007452190 @default.
- W4387203875 hasAuthorship W4387203875A5015198150 @default.
- W4387203875 hasAuthorship W4387203875A5024576451 @default.
- W4387203875 hasAuthorship W4387203875A5053593782 @default.
- W4387203875 hasAuthorship W4387203875A5076652365 @default.
- W4387203875 hasAuthorship W4387203875A5089128517 @default.