Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387204736> ?p ?o ?g. }
- W4387204736 endingPage "25" @default.
- W4387204736 startingPage "16" @default.
- W4387204736 abstract "Using a comparison of three different major types, the best predictive model was determined. Statistical models and machine learning algorithms automatically learn and improve based on data. Deep learning uses neural networks to learn complex data patterns and relationships. A combination of satellite imagery, radar data, and ground-based observations are used and using aircraft or satellites, and remote sensing (RS) collects data on distant objects or locations. Satellites and radar are used to gather regional precipitation data for hybrid models. An algorithm trained on historical rainfall measurements would then process the data. Using remote monitoring instrument input features, the machine-learning model can predict precipitation. Evaluation of machine learning regression methods is based on the degree of agreement between predicted and observed values. The RMSE, R2, and MAE statistical measures check on the precision of a prediction or forecasting model. Machine learning excels at rainfall prediction regardless of climate or timescale. As one of the more popular models for predicting rainfall, the LSTM models demonstrate their superiority. Remote sensing and hybrid predictive models should be investigated further due to their scarcity." @default.
- W4387204736 created "2023-09-30" @default.
- W4387204736 creator A5006424822 @default.
- W4387204736 creator A5010789167 @default.
- W4387204736 creator A5011982680 @default.
- W4387204736 creator A5033714709 @default.
- W4387204736 creator A5051717915 @default.
- W4387204736 creator A5069455833 @default.
- W4387204736 creator A5081710674 @default.
- W4387204736 creator A5092678291 @default.
- W4387204736 date "2023-11-01" @default.
- W4387204736 modified "2023-10-01" @default.
- W4387204736 title "Assessing rainfall prediction models: Exploring the advantages of machine learning and remote sensing approaches" @default.
- W4387204736 cites W2012413692 @default.
- W4387204736 cites W2108006050 @default.
- W4387204736 cites W2164502060 @default.
- W4387204736 cites W2885069571 @default.
- W4387204736 cites W2911325341 @default.
- W4387204736 cites W2941509961 @default.
- W4387204736 cites W2991428539 @default.
- W4387204736 cites W3006121414 @default.
- W4387204736 cites W3011867832 @default.
- W4387204736 cites W3039809350 @default.
- W4387204736 cites W3087067056 @default.
- W4387204736 cites W3091842690 @default.
- W4387204736 cites W3100431304 @default.
- W4387204736 cites W3118599592 @default.
- W4387204736 cites W3128349864 @default.
- W4387204736 cites W3137746357 @default.
- W4387204736 cites W3175538958 @default.
- W4387204736 cites W3181356059 @default.
- W4387204736 cites W3186119996 @default.
- W4387204736 cites W3193708269 @default.
- W4387204736 cites W3205292822 @default.
- W4387204736 cites W3209515166 @default.
- W4387204736 cites W3212172084 @default.
- W4387204736 cites W4214565716 @default.
- W4387204736 cites W4214905925 @default.
- W4387204736 cites W4220773927 @default.
- W4387204736 cites W4223945303 @default.
- W4387204736 cites W4229023302 @default.
- W4387204736 cites W4283009417 @default.
- W4387204736 cites W4283811973 @default.
- W4387204736 cites W4285742884 @default.
- W4387204736 cites W4289731709 @default.
- W4387204736 cites W4309971527 @default.
- W4387204736 cites W4310039782 @default.
- W4387204736 cites W4312232459 @default.
- W4387204736 doi "https://doi.org/10.1016/j.aej.2023.09.060" @default.
- W4387204736 hasPublicationYear "2023" @default.
- W4387204736 type Work @default.
- W4387204736 citedByCount "0" @default.
- W4387204736 crossrefType "journal-article" @default.
- W4387204736 hasAuthorship W4387204736A5006424822 @default.
- W4387204736 hasAuthorship W4387204736A5010789167 @default.
- W4387204736 hasAuthorship W4387204736A5011982680 @default.
- W4387204736 hasAuthorship W4387204736A5033714709 @default.
- W4387204736 hasAuthorship W4387204736A5051717915 @default.
- W4387204736 hasAuthorship W4387204736A5069455833 @default.
- W4387204736 hasAuthorship W4387204736A5081710674 @default.
- W4387204736 hasAuthorship W4387204736A5092678291 @default.
- W4387204736 hasBestOaLocation W43872047361 @default.
- W4387204736 hasConcept C105795698 @default.
- W4387204736 hasConcept C119857082 @default.
- W4387204736 hasConcept C12267149 @default.
- W4387204736 hasConcept C124101348 @default.
- W4387204736 hasConcept C127413603 @default.
- W4387204736 hasConcept C146978453 @default.
- W4387204736 hasConcept C154945302 @default.
- W4387204736 hasConcept C19269812 @default.
- W4387204736 hasConcept C205649164 @default.
- W4387204736 hasConcept C2778102629 @default.
- W4387204736 hasConcept C33923547 @default.
- W4387204736 hasConcept C41008148 @default.
- W4387204736 hasConcept C45804977 @default.
- W4387204736 hasConcept C50644808 @default.
- W4387204736 hasConcept C554190296 @default.
- W4387204736 hasConcept C62649853 @default.
- W4387204736 hasConcept C76155785 @default.
- W4387204736 hasConcept C83546350 @default.
- W4387204736 hasConceptScore W4387204736C105795698 @default.
- W4387204736 hasConceptScore W4387204736C119857082 @default.
- W4387204736 hasConceptScore W4387204736C12267149 @default.
- W4387204736 hasConceptScore W4387204736C124101348 @default.
- W4387204736 hasConceptScore W4387204736C127413603 @default.
- W4387204736 hasConceptScore W4387204736C146978453 @default.
- W4387204736 hasConceptScore W4387204736C154945302 @default.
- W4387204736 hasConceptScore W4387204736C19269812 @default.
- W4387204736 hasConceptScore W4387204736C205649164 @default.
- W4387204736 hasConceptScore W4387204736C2778102629 @default.
- W4387204736 hasConceptScore W4387204736C33923547 @default.
- W4387204736 hasConceptScore W4387204736C41008148 @default.
- W4387204736 hasConceptScore W4387204736C45804977 @default.
- W4387204736 hasConceptScore W4387204736C50644808 @default.
- W4387204736 hasConceptScore W4387204736C554190296 @default.
- W4387204736 hasConceptScore W4387204736C62649853 @default.
- W4387204736 hasConceptScore W4387204736C76155785 @default.
- W4387204736 hasConceptScore W4387204736C83546350 @default.