Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387206329> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387206329 endingPage "e109" @default.
- W4387206329 startingPage "e109" @default.
- W4387206329 abstract "Dosing for single fraction radiosurgery has traditionally relied on tumor measurements from a single maximum diameter. Most protocols recommend setting dosing criteria based on assumed risk of radionecrosis roughly correlating with tumor size. However, the risk of radionecrosis after radiosurgery is best modeled by a function of dose and volume treated, with the largest body of evidence supporting the use of brain tissue receiving ≥12 Gy in one fraction (V12, i.e., > 10.9 cm3). Here we show that tumor surface area (SA) and second order dimensions are superior predictors for Gamma Knife radiosurgical toxicity and can be used to estimate V12.A total of 1217 brain metastases from 245 patients treated with a prescribed dose from 13 to 27 Gy in one fraction were retrospectively reviewed. Eight independent modeling parameters were considered; 3 geometric tumor characteristics: SA, volume (V), and largest axial dimension (LAD) and 5 treatment planning variables: prescription dose (Rx), coverage, selectivity, gradient index, and number of shots. Linear regression and power-law formulations were performed to determine which parameters were the most accurate predictors of V12. The power model is dependent on a conceptualized pseudo surface area (PSA), defined as the surface area of a sphere with a diameter of LAD of a lesion (PSA = π*LAD2). At the aggregate patient level, the model predicts total brain V12 by summing the V12 values for each singular lesion only by using LAD and Rx as input variables.Tumor SA was the best univariate linear predictor of V12 (adjR2 = 0.770), followed by LAD (adjR2 = 0.755) and V (adjR2 = 0.745). The SA predictive model improves for lesions that have high sphericity > 0.85 (adjR2 = 0.837), with a measure of 1 indicating a perfect sphere. Using bivariable regression analysis, we formulated a single term power model that even more accurately predicts for V12 (V12 = 0.0137 * Rx1.5 * LAD2, adjR2 = 0.906) and is proportional to PSA. At the patient level, this model also accurately predicts for total brain V12 (adjR2 = 0.896) and V12 > 10.9 cm3 (Sensitivity = 99.1%, Specificity = 90.5%).Conceptually, SA univariately predicts for V12 more accurately than other tumor physical dimensions or treatment planning parameters, while the best bivariable power model involves PSA. We provide a preplan model for brain metastases that can help better estimate radionecrosis risk, determine prescription doses given a target V12, and provide safe dose escalation strategies without the use of any planning software." @default.
- W4387206329 created "2023-09-30" @default.
- W4387206329 creator A5010930852 @default.
- W4387206329 creator A5031386165 @default.
- W4387206329 creator A5031909406 @default.
- W4387206329 creator A5049134199 @default.
- W4387206329 creator A5056780155 @default.
- W4387206329 creator A5060464914 @default.
- W4387206329 date "2023-10-01" @default.
- W4387206329 modified "2023-10-17" @default.
- W4387206329 title "Modeling Gamma Knife Radiosurgical Toxicity for Multiple Brain Metastases" @default.
- W4387206329 doi "https://doi.org/10.1016/j.ijrobp.2023.06.886" @default.
- W4387206329 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37784643" @default.
- W4387206329 hasPublicationYear "2023" @default.
- W4387206329 type Work @default.
- W4387206329 citedByCount "0" @default.
- W4387206329 crossrefType "journal-article" @default.
- W4387206329 hasAuthorship W4387206329A5010930852 @default.
- W4387206329 hasAuthorship W4387206329A5031386165 @default.
- W4387206329 hasAuthorship W4387206329A5031909406 @default.
- W4387206329 hasAuthorship W4387206329A5049134199 @default.
- W4387206329 hasAuthorship W4387206329A5056780155 @default.
- W4387206329 hasAuthorship W4387206329A5060464914 @default.
- W4387206329 hasConcept C126322002 @default.
- W4387206329 hasConcept C126838900 @default.
- W4387206329 hasConcept C141071460 @default.
- W4387206329 hasConcept C201645570 @default.
- W4387206329 hasConcept C2777288759 @default.
- W4387206329 hasConcept C2777501473 @default.
- W4387206329 hasConcept C2780387249 @default.
- W4387206329 hasConcept C2781156865 @default.
- W4387206329 hasConcept C29730261 @default.
- W4387206329 hasConcept C2989005 @default.
- W4387206329 hasConcept C509974204 @default.
- W4387206329 hasConcept C71924100 @default.
- W4387206329 hasConceptScore W4387206329C126322002 @default.
- W4387206329 hasConceptScore W4387206329C126838900 @default.
- W4387206329 hasConceptScore W4387206329C141071460 @default.
- W4387206329 hasConceptScore W4387206329C201645570 @default.
- W4387206329 hasConceptScore W4387206329C2777288759 @default.
- W4387206329 hasConceptScore W4387206329C2777501473 @default.
- W4387206329 hasConceptScore W4387206329C2780387249 @default.
- W4387206329 hasConceptScore W4387206329C2781156865 @default.
- W4387206329 hasConceptScore W4387206329C29730261 @default.
- W4387206329 hasConceptScore W4387206329C2989005 @default.
- W4387206329 hasConceptScore W4387206329C509974204 @default.
- W4387206329 hasConceptScore W4387206329C71924100 @default.
- W4387206329 hasIssue "2" @default.
- W4387206329 hasLocation W43872063291 @default.
- W4387206329 hasLocation W43872063292 @default.
- W4387206329 hasOpenAccess W4387206329 @default.
- W4387206329 hasPrimaryLocation W43872063291 @default.
- W4387206329 hasRelatedWork W1500316510 @default.
- W4387206329 hasRelatedWork W1969405791 @default.
- W4387206329 hasRelatedWork W1986083667 @default.
- W4387206329 hasRelatedWork W2004112197 @default.
- W4387206329 hasRelatedWork W2045026794 @default.
- W4387206329 hasRelatedWork W2102963139 @default.
- W4387206329 hasRelatedWork W2162636075 @default.
- W4387206329 hasRelatedWork W2332502965 @default.
- W4387206329 hasRelatedWork W2510642451 @default.
- W4387206329 hasRelatedWork W4231853619 @default.
- W4387206329 hasVolume "117" @default.
- W4387206329 isParatext "false" @default.
- W4387206329 isRetracted "false" @default.
- W4387206329 workType "article" @default.