Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387206789> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4387206789 endingPage "e496" @default.
- W4387206789 startingPage "e496" @default.
- W4387206789 abstract "Radiotherapy is one of the most effective methods for the treatment of brain metastases (BMs). Traditional manual delineation of primary gross tumor volumes (GTV) of multiple BMs (especially small metastases) in radiotherapy practice is extremely labor intensive and highly dependent on oncologists' experience, achieving the precise and efficient automatic delineation of BMs is of great significance for efficient and homogeneous one-stop adaptive radiotherapy.We retrospectively collected 62 MRI (non-enhanced T1-weighted sequences) sequences of 50 patients with BMs from January 2020 to July 2021. An automatic model (BUC-Net) for automatic delineation BMs was proposed in this work, which was based on deep learning by combining 3D bottler layer module and the cascade architecture to improve the accuracy and efficient of BMs' automatic delineation, especially for small metastases with tiny size and relatively low contrast. The prosed method was compared with the existing 3D U-Net (U-Net) and 3D U-Net Cascade (U-Net Cascade). The performance of our proposed method was evaluated by Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95) and average surface distance (ASD) with human experts.The automatic segmentation results of BUC-Net evaluated with 310 BMs in 13 test patients was summarized in Table 1. These BMs in each test patient were automatically delineated by two types of contours: as a whole tumor contour (Whole-delineation) and the multiple tumor contours (Multiple-delineation). BUC-Net performed the best mean DSC and HD95, which is significantly outperformed U-Net (Whole-delineation: 0.911 & 0.894 of DSC, Multiple-delineation: 0.794 & 0.754 of DSC, P < 0.05 for both) and U-Net cascade (Whole-delineation: 0.947 & 7.141 of HD95, Multiple-delineation: 0.902 & 1.171 of HD95, P < 0.05 for both); Additionally, BUC-Net achieved the best mean ASD for Whole-delineation and comparable ASD (0.290 & 0.277, P > 0) for Multiple-delineation with U-Net Cascade.Our results showed that the proposed approach is promising for the automatic delineation of BMs in MRI, which can be integrated into a radiotherapy workflow to significantly shorten segmentation time." @default.
- W4387206789 created "2023-09-30" @default.
- W4387206789 creator A5003245532 @default.
- W4387206789 creator A5012755658 @default.
- W4387206789 creator A5017055867 @default.
- W4387206789 creator A5019660907 @default.
- W4387206789 creator A5060002817 @default.
- W4387206789 creator A5065037360 @default.
- W4387206789 creator A5068428294 @default.
- W4387206789 creator A5082226210 @default.
- W4387206789 creator A5091520540 @default.
- W4387206789 date "2023-10-01" @default.
- W4387206789 modified "2023-10-04" @default.
- W4387206789 title "Deep Learning for Automated Contouring of Primary Gross Tumor Volumes by MRI for Radiation Therapy of Brain Metastasis" @default.
- W4387206789 doi "https://doi.org/10.1016/j.ijrobp.2023.06.1734" @default.
- W4387206789 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37785562" @default.
- W4387206789 hasPublicationYear "2023" @default.
- W4387206789 type Work @default.
- W4387206789 citedByCount "0" @default.
- W4387206789 crossrefType "journal-article" @default.
- W4387206789 hasAuthorship W4387206789A5003245532 @default.
- W4387206789 hasAuthorship W4387206789A5012755658 @default.
- W4387206789 hasAuthorship W4387206789A5017055867 @default.
- W4387206789 hasAuthorship W4387206789A5019660907 @default.
- W4387206789 hasAuthorship W4387206789A5060002817 @default.
- W4387206789 hasAuthorship W4387206789A5065037360 @default.
- W4387206789 hasAuthorship W4387206789A5068428294 @default.
- W4387206789 hasAuthorship W4387206789A5082226210 @default.
- W4387206789 hasAuthorship W4387206789A5091520540 @default.
- W4387206789 hasConcept C108583219 @default.
- W4387206789 hasConcept C121684516 @default.
- W4387206789 hasConcept C126838900 @default.
- W4387206789 hasConcept C141898687 @default.
- W4387206789 hasConcept C154945302 @default.
- W4387206789 hasConcept C2779104521 @default.
- W4387206789 hasConcept C2989005 @default.
- W4387206789 hasConcept C41008148 @default.
- W4387206789 hasConcept C509974204 @default.
- W4387206789 hasConcept C71924100 @default.
- W4387206789 hasConcept C89600930 @default.
- W4387206789 hasConceptScore W4387206789C108583219 @default.
- W4387206789 hasConceptScore W4387206789C121684516 @default.
- W4387206789 hasConceptScore W4387206789C126838900 @default.
- W4387206789 hasConceptScore W4387206789C141898687 @default.
- W4387206789 hasConceptScore W4387206789C154945302 @default.
- W4387206789 hasConceptScore W4387206789C2779104521 @default.
- W4387206789 hasConceptScore W4387206789C2989005 @default.
- W4387206789 hasConceptScore W4387206789C41008148 @default.
- W4387206789 hasConceptScore W4387206789C509974204 @default.
- W4387206789 hasConceptScore W4387206789C71924100 @default.
- W4387206789 hasConceptScore W4387206789C89600930 @default.
- W4387206789 hasIssue "2" @default.
- W4387206789 hasLocation W43872067891 @default.
- W4387206789 hasLocation W43872067892 @default.
- W4387206789 hasOpenAccess W4387206789 @default.
- W4387206789 hasPrimaryLocation W43872067891 @default.
- W4387206789 hasRelatedWork W2790662084 @default.
- W4387206789 hasRelatedWork W2954384599 @default.
- W4387206789 hasRelatedWork W2960184797 @default.
- W4387206789 hasRelatedWork W3104734424 @default.
- W4387206789 hasRelatedWork W3206966550 @default.
- W4387206789 hasRelatedWork W3209779739 @default.
- W4387206789 hasRelatedWork W4226289457 @default.
- W4387206789 hasRelatedWork W4285827401 @default.
- W4387206789 hasRelatedWork W4323256882 @default.
- W4387206789 hasRelatedWork W4386352607 @default.
- W4387206789 hasVolume "117" @default.
- W4387206789 isParatext "false" @default.
- W4387206789 isRetracted "false" @default.
- W4387206789 workType "article" @default.