Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387206892> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4387206892 endingPage "e272" @default.
- W4387206892 startingPage "e272" @default.
- W4387206892 abstract "Ultra-high dose rate (FLASH) irradiation has been reported to provide decreased normal tissue toxicity without compromising tumor control compared with conventional (CONV) irradiation. However, a comprehensive understanding of the FLASH biological effect requires precise quantification of radiobiology. The study is to explore whether deep learning (DL) can tackle the task. As a proof of concept, we investigate a DL model for estimating FLASH dose to its equivalent CONV dose.Healthy C57Bl/6 female mice underwent FLASH (200Gy/s; n = 43) or CONV (0.12Gy/s; n = 41) whole abdominal irradiation using ∼16 MeV electron beams with a dose escalation scheme of 5 groups (n = 8 or 9) at 1Gy increments: 12-16Gy FLASH, 11-15Gy CONV. 4 days post-irradiation, 9 jejunum cross-sections per mouse were H&E stained for histological analysis. Each cross-section image was processed to remove lumen background and oversampled into multiple large-scale and small-scale patches along jejunal circumference. In CONV dataset, we randomly selected the data of 32 mice (80%) for model training and the rest (20%) for model validation. A ResNet101-based DL model, pre-trained with an unsupervised contrastive learning scheme, was retrained with only CONV training set to estimate corresponding CONV dose. For comparison, a crypt counting (CC) approach was implemented by manually counting the number of regenerating crypts on each cross-section image. An exponential function of dose vs crypt number was fitted with the CONV training set and used for dose estimation on the testing set. Mean squared error (MSE) was used to assess the accuracy of DL and CC approaches in estimating dose levels in CONV irradiation. The validated DL model was applied to the FLASH set to project FLASH dose into corresponding CONV dose that results in equivalent biological response.The CONV dose estimated by DL and CC approaches and DL-estimated FLASH equivalent dose were summarized in Table 1. The DL model achieved an MSE of 0.21 Gy2 on CONV testing set compared with 0.32 Gy2 of the CC approach. FLASH equivalent dose estimated by DL model for 12, 13, 14, 15 and 16Gy were 12.16±0.40, 12.53±0.32, 12.72±0.24, 12.85±0.20 and 13.04±0.27 Sv, respectively.Our proposed DL model can accurately estimate the CONV dose based on histological images. The DL predictions of FLASH dataset demonstrate that FLASH may reduce normal tissue toxicity with a lower equivalent dose, especially at high irradiated dose levels. Our study indicates that deep learning can be potentially used to assess the equivalent dose of FLASH irradiation to normal tissue." @default.
- W4387206892 created "2023-09-30" @default.
- W4387206892 creator A5001969147 @default.
- W4387206892 creator A5003025241 @default.
- W4387206892 creator A5006396275 @default.
- W4387206892 creator A5014755259 @default.
- W4387206892 creator A5016234124 @default.
- W4387206892 creator A5016420174 @default.
- W4387206892 creator A5020654435 @default.
- W4387206892 creator A5024704039 @default.
- W4387206892 creator A5032293589 @default.
- W4387206892 creator A5038994179 @default.
- W4387206892 creator A5039606115 @default.
- W4387206892 creator A5048542644 @default.
- W4387206892 creator A5058481348 @default.
- W4387206892 creator A5059684522 @default.
- W4387206892 creator A5069251147 @default.
- W4387206892 creator A5072806273 @default.
- W4387206892 date "2023-10-01" @default.
- W4387206892 modified "2023-10-04" @default.
- W4387206892 title "Equivalent Dose Estimation in FLASH Irradiation with a Deep Learning Approach" @default.
- W4387206892 doi "https://doi.org/10.1016/j.ijrobp.2023.06.1241" @default.
- W4387206892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37785029" @default.
- W4387206892 hasPublicationYear "2023" @default.
- W4387206892 type Work @default.
- W4387206892 citedByCount "0" @default.
- W4387206892 crossrefType "journal-article" @default.
- W4387206892 hasAuthorship W4387206892A5001969147 @default.
- W4387206892 hasAuthorship W4387206892A5003025241 @default.
- W4387206892 hasAuthorship W4387206892A5006396275 @default.
- W4387206892 hasAuthorship W4387206892A5014755259 @default.
- W4387206892 hasAuthorship W4387206892A5016234124 @default.
- W4387206892 hasAuthorship W4387206892A5016420174 @default.
- W4387206892 hasAuthorship W4387206892A5020654435 @default.
- W4387206892 hasAuthorship W4387206892A5024704039 @default.
- W4387206892 hasAuthorship W4387206892A5032293589 @default.
- W4387206892 hasAuthorship W4387206892A5038994179 @default.
- W4387206892 hasAuthorship W4387206892A5039606115 @default.
- W4387206892 hasAuthorship W4387206892A5048542644 @default.
- W4387206892 hasAuthorship W4387206892A5058481348 @default.
- W4387206892 hasAuthorship W4387206892A5059684522 @default.
- W4387206892 hasAuthorship W4387206892A5069251147 @default.
- W4387206892 hasAuthorship W4387206892A5072806273 @default.
- W4387206892 hasConcept C111337013 @default.
- W4387206892 hasConcept C120665830 @default.
- W4387206892 hasConcept C121332964 @default.
- W4387206892 hasConcept C126322002 @default.
- W4387206892 hasConcept C154945302 @default.
- W4387206892 hasConcept C169903167 @default.
- W4387206892 hasConcept C185544564 @default.
- W4387206892 hasConcept C2777526259 @default.
- W4387206892 hasConcept C2989005 @default.
- W4387206892 hasConcept C41008148 @default.
- W4387206892 hasConcept C66090201 @default.
- W4387206892 hasConcept C71924100 @default.
- W4387206892 hasConceptScore W4387206892C111337013 @default.
- W4387206892 hasConceptScore W4387206892C120665830 @default.
- W4387206892 hasConceptScore W4387206892C121332964 @default.
- W4387206892 hasConceptScore W4387206892C126322002 @default.
- W4387206892 hasConceptScore W4387206892C154945302 @default.
- W4387206892 hasConceptScore W4387206892C169903167 @default.
- W4387206892 hasConceptScore W4387206892C185544564 @default.
- W4387206892 hasConceptScore W4387206892C2777526259 @default.
- W4387206892 hasConceptScore W4387206892C2989005 @default.
- W4387206892 hasConceptScore W4387206892C41008148 @default.
- W4387206892 hasConceptScore W4387206892C66090201 @default.
- W4387206892 hasConceptScore W4387206892C71924100 @default.
- W4387206892 hasIssue "2" @default.
- W4387206892 hasLocation W43872068921 @default.
- W4387206892 hasLocation W43872068922 @default.
- W4387206892 hasOpenAccess W4387206892 @default.
- W4387206892 hasPrimaryLocation W43872068921 @default.
- W4387206892 hasRelatedWork W108213934 @default.
- W4387206892 hasRelatedWork W1971993406 @default.
- W4387206892 hasRelatedWork W2011742090 @default.
- W4387206892 hasRelatedWork W2068376517 @default.
- W4387206892 hasRelatedWork W2081685347 @default.
- W4387206892 hasRelatedWork W2144554917 @default.
- W4387206892 hasRelatedWork W2272899425 @default.
- W4387206892 hasRelatedWork W2473431470 @default.
- W4387206892 hasRelatedWork W4310213292 @default.
- W4387206892 hasRelatedWork W4387207339 @default.
- W4387206892 hasVolume "117" @default.
- W4387206892 isParatext "false" @default.
- W4387206892 isRetracted "false" @default.
- W4387206892 workType "article" @default.