Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387206972> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4387206972 endingPage "e168" @default.
- W4387206972 startingPage "e168" @default.
- W4387206972 abstract "Lymphopenia is common after radiotherapy (RT) and is known for its significance on poor survival outcomes in patients with breast cancer. Previous work has demonstrated the significance of point dosimetric factors like the volume receiving 5 Gy. Considering the full dosimetric data together, this study aimed to develop and validate predictive models for lymphopenia after RT in breast cancer.Patients with breast cancer treated with radiation therapy in adjuvant setting and with complete dosimetric data were eligible. Combining dose-volume histogram (DVH) dosimetric and clinical factors, dense neural network (DNN) models were developed to predict both the reduction in lymphocyte counts and the graded lymphopenia in breast cancer patients after adjuvant RT. A Shapley additive explanation was applied to explain each feature's directional contributions. The generalization of DNN models was validated in both internal and independent external validation cohorts. P<0.05 was considered to be significant.A total of 928 consecutive patients with invasive breast cancer were eligible for this study. Treatment volumes of nearly all irradiation dose levels of DVH were significant predictors for lymphopenia after RT, including volumes at very low-dose 1 Gy (V1) of all structures considered including the lung, heart and body. DNN models using full DVH dosimetric and clinical factors were built and a simplified model was further established and validated in both internal and external validation cohorts. This simplified DNN AI model, combining full DVH dosimetric parameters of all OARs and five key clinical factors including baseline lymphocyte counts, tumor stage, RT technique, RT fields and RT fractionation, showed a predictive accuracy of 77% and above.This study demonstrated and externally validated the significance of an AI model of combining clinical and full dosimetric data, especially the volume of low dose at as low as 1 Gy of all critical structures on lymphopenia after RT in patients with breast cancer. The significance of V1 deserves special attention, as modern arc RT technology often has relatively high value of this parameter. Further study warranted for breast cancer RT plan optimization." @default.
- W4387206972 created "2023-09-30" @default.
- W4387206972 creator A5005012560 @default.
- W4387206972 creator A5005732499 @default.
- W4387206972 creator A5016132364 @default.
- W4387206972 creator A5017941291 @default.
- W4387206972 creator A5051364953 @default.
- W4387206972 creator A5072044103 @default.
- W4387206972 creator A5072797151 @default.
- W4387206972 creator A5087107933 @default.
- W4387206972 creator A5091243183 @default.
- W4387206972 date "2023-10-01" @default.
- W4387206972 modified "2023-10-16" @default.
- W4387206972 title "Interpretable Deep Learning Identified the Significance of 1 Gy Volume on Lymphopenia after Radiotherapy in Breast Cancer" @default.
- W4387206972 doi "https://doi.org/10.1016/j.ijrobp.2023.06.1006" @default.
- W4387206972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37784771" @default.
- W4387206972 hasPublicationYear "2023" @default.
- W4387206972 type Work @default.
- W4387206972 citedByCount "0" @default.
- W4387206972 crossrefType "journal-article" @default.
- W4387206972 hasAuthorship W4387206972A5005012560 @default.
- W4387206972 hasAuthorship W4387206972A5005732499 @default.
- W4387206972 hasAuthorship W4387206972A5016132364 @default.
- W4387206972 hasAuthorship W4387206972A5017941291 @default.
- W4387206972 hasAuthorship W4387206972A5051364953 @default.
- W4387206972 hasAuthorship W4387206972A5072044103 @default.
- W4387206972 hasAuthorship W4387206972A5072797151 @default.
- W4387206972 hasAuthorship W4387206972A5087107933 @default.
- W4387206972 hasAuthorship W4387206972A5091243183 @default.
- W4387206972 hasConcept C121608353 @default.
- W4387206972 hasConcept C126322002 @default.
- W4387206972 hasConcept C126838900 @default.
- W4387206972 hasConcept C143998085 @default.
- W4387206972 hasConcept C201645570 @default.
- W4387206972 hasConcept C2780198649 @default.
- W4387206972 hasConcept C2989005 @default.
- W4387206972 hasConcept C509974204 @default.
- W4387206972 hasConcept C530470458 @default.
- W4387206972 hasConcept C63363279 @default.
- W4387206972 hasConcept C71924100 @default.
- W4387206972 hasConceptScore W4387206972C121608353 @default.
- W4387206972 hasConceptScore W4387206972C126322002 @default.
- W4387206972 hasConceptScore W4387206972C126838900 @default.
- W4387206972 hasConceptScore W4387206972C143998085 @default.
- W4387206972 hasConceptScore W4387206972C201645570 @default.
- W4387206972 hasConceptScore W4387206972C2780198649 @default.
- W4387206972 hasConceptScore W4387206972C2989005 @default.
- W4387206972 hasConceptScore W4387206972C509974204 @default.
- W4387206972 hasConceptScore W4387206972C530470458 @default.
- W4387206972 hasConceptScore W4387206972C63363279 @default.
- W4387206972 hasConceptScore W4387206972C71924100 @default.
- W4387206972 hasIssue "2" @default.
- W4387206972 hasLocation W43872069721 @default.
- W4387206972 hasLocation W43872069722 @default.
- W4387206972 hasOpenAccess W4387206972 @default.
- W4387206972 hasPrimaryLocation W43872069721 @default.
- W4387206972 hasRelatedWork W150871787 @default.
- W4387206972 hasRelatedWork W2060905781 @default.
- W4387206972 hasRelatedWork W2155962753 @default.
- W4387206972 hasRelatedWork W2224319365 @default.
- W4387206972 hasRelatedWork W2384708512 @default.
- W4387206972 hasRelatedWork W2466949046 @default.
- W4387206972 hasRelatedWork W2897588803 @default.
- W4387206972 hasRelatedWork W2972384824 @default.
- W4387206972 hasRelatedWork W3029766897 @default.
- W4387206972 hasRelatedWork W3101879963 @default.
- W4387206972 hasVolume "117" @default.
- W4387206972 isParatext "false" @default.
- W4387206972 isRetracted "false" @default.
- W4387206972 workType "article" @default.