Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387207042> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387207042 endingPage "e495" @default.
- W4387207042 startingPage "e495" @default.
- W4387207042 abstract "To evaluate the differences in the segmentation of organs at risk (OARs) in planning and replanning radiotherapy CT images, and to assess the feasibility of using deep learning segmentation models trained on planning radiotherapy CTs for the contouring of OARs in replanning radiotherapy CTs.A total of 82 pairs of corresponding planning and replanning CT images from clinics were collected for contouring OARs in nasopharyngeal carcinoma patients. 14 of these were selected as the test set, and 20 OARs were selected for analysis. The deep learning model utilized in this study was the medical image segmentation framework, nnUNet. The test set of 14 replanning radiotherapy CT images was processed using different models trained on three training strategies: (A) 68 sets of planning CTs; (B) 68 sets of replanning CTs; (C) a mixed set of both 34 planning and replanning CTs. Additionally, the model trained by strategy A was also tested on the test set of 14 planning CT images. The segmentation results were evaluated using the Dice Similarity Coefficient (DSC).The average DSCs of the models trained using strategies A, B, and C on the test set of replanning CTs were (A) 0.54±0.28; (B) 0.57±0.28; (C) 0.56±0.27, respectively. On the test set of planning CTs, the average DSC of the model trained using strategy A was 0.64±0.25. These showed that when processing replanning CTs, the segmentation accuracy of the model trained using strategy A was significantly lower than that of the model trained using strategy B (p < 0.01), while the accuracy of the model trained using strategy C was improved compared to that of strategy A but still inferior to that of strategy B. Furthermore, the model trained on planning radiotherapy CTs alone (strategy A) showed a large difference in accuracy when processing planning and replanning CTs separately (p < 0.001).There is a significant difference in the segmentation of OARs in planning and replanning radiotherapy CT images, and the deep learning segmentation model constructed based on planning radiotherapy CTs is not suitable for the segmentation of OARs in replanning radiotherapy CT images. This highlights the need for re-modeling based on replanning CTs and also inspires us to incorporate the prior information contained in planning CTs and their labels into the OARs contouring of corresponding replanning radiotherapy CTs. These will, to some extent, provide insights into potential avenues for enhancing the future segmentation efficacy of adaptive radiotherapy." @default.
- W4387207042 created "2023-09-30" @default.
- W4387207042 creator A5020871102 @default.
- W4387207042 creator A5047906405 @default.
- W4387207042 creator A5052560070 @default.
- W4387207042 creator A5082744248 @default.
- W4387207042 date "2023-10-01" @default.
- W4387207042 modified "2023-10-17" @default.
- W4387207042 title "Is a Deep Learning Based Segmentation Model Trained on planning CTs Transferable for Segmentation of Organs at Risk in Replanning CTs?" @default.
- W4387207042 doi "https://doi.org/10.1016/j.ijrobp.2023.06.1732" @default.
- W4387207042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37785560" @default.
- W4387207042 hasPublicationYear "2023" @default.
- W4387207042 type Work @default.
- W4387207042 citedByCount "0" @default.
- W4387207042 crossrefType "journal-article" @default.
- W4387207042 hasAuthorship W4387207042A5020871102 @default.
- W4387207042 hasAuthorship W4387207042A5047906405 @default.
- W4387207042 hasAuthorship W4387207042A5052560070 @default.
- W4387207042 hasAuthorship W4387207042A5082744248 @default.
- W4387207042 hasConcept C108583219 @default.
- W4387207042 hasConcept C121684516 @default.
- W4387207042 hasConcept C124504099 @default.
- W4387207042 hasConcept C126838900 @default.
- W4387207042 hasConcept C153180895 @default.
- W4387207042 hasConcept C154945302 @default.
- W4387207042 hasConcept C169903167 @default.
- W4387207042 hasConcept C201645570 @default.
- W4387207042 hasConcept C2779104521 @default.
- W4387207042 hasConcept C41008148 @default.
- W4387207042 hasConcept C509974204 @default.
- W4387207042 hasConcept C71924100 @default.
- W4387207042 hasConcept C89600930 @default.
- W4387207042 hasConceptScore W4387207042C108583219 @default.
- W4387207042 hasConceptScore W4387207042C121684516 @default.
- W4387207042 hasConceptScore W4387207042C124504099 @default.
- W4387207042 hasConceptScore W4387207042C126838900 @default.
- W4387207042 hasConceptScore W4387207042C153180895 @default.
- W4387207042 hasConceptScore W4387207042C154945302 @default.
- W4387207042 hasConceptScore W4387207042C169903167 @default.
- W4387207042 hasConceptScore W4387207042C201645570 @default.
- W4387207042 hasConceptScore W4387207042C2779104521 @default.
- W4387207042 hasConceptScore W4387207042C41008148 @default.
- W4387207042 hasConceptScore W4387207042C509974204 @default.
- W4387207042 hasConceptScore W4387207042C71924100 @default.
- W4387207042 hasConceptScore W4387207042C89600930 @default.
- W4387207042 hasIssue "2" @default.
- W4387207042 hasLocation W43872070421 @default.
- W4387207042 hasLocation W43872070422 @default.
- W4387207042 hasOpenAccess W4387207042 @default.
- W4387207042 hasPrimaryLocation W43872070421 @default.
- W4387207042 hasRelatedWork W2155235045 @default.
- W4387207042 hasRelatedWork W2167401887 @default.
- W4387207042 hasRelatedWork W2571225489 @default.
- W4387207042 hasRelatedWork W2790662084 @default.
- W4387207042 hasRelatedWork W2954384599 @default.
- W4387207042 hasRelatedWork W2960184797 @default.
- W4387207042 hasRelatedWork W3104734424 @default.
- W4387207042 hasRelatedWork W3206966550 @default.
- W4387207042 hasRelatedWork W4226289457 @default.
- W4387207042 hasRelatedWork W4285827401 @default.
- W4387207042 hasVolume "117" @default.
- W4387207042 isParatext "false" @default.
- W4387207042 isRetracted "false" @default.
- W4387207042 workType "article" @default.