Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387207411> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4387207411 endingPage "e461" @default.
- W4387207411 startingPage "e460" @default.
- W4387207411 abstract "Patient portal messaging is an increasingly important form of communication between patients and medical providers. This has become particularly relevant in oncology, where patients undergo intense longitudinal treatments that require frequent communication regarding symptoms, appointments, and diagnostic results. The rise in the volume of these messages has significantly increased the workload of medical providers and consequent physician burn-out. Natural language processing (NLP), particularly transformer-based models, may offer an automated approach to characterize the content of patient messages and improve message triage and routing. In this study, we employed a state-of-the-art language model (Bidirectional Encoder Representations from Transformers; BERT) to identify data-derived categories of representative topics from real-world data thereby providing basic information to build an appropriate routing system.Patient-generated portal messages sent to a messaging pool for a single institution radiation oncology department from 2014 to 2023 were extracted. BERTopic, an NLP-based topic modeling technique based on BERT was optimized for topic modeling of patient messages. Uniform Manifold Approximation and Projection (UMAP) was used to reduce dimensionality and visualize topic relationships across messages. The BERTopic-identified topic categories were subsequently labeled manually by one of the physician investigators. Differences of number of messages over time were assessed using t-tests.A total of 47,492 messages were retrieved. The average number of messages per month from a single patient ranged from 1 to 18 (median 1.67, interquartile range 1.0-2.4). The total volume of patient messages showed a ten-fold increase over the study period, with 101 messages per month sent in 2014 and 999 messages per month in 2022 (p<0.001). BERTopic initially identified 35 topics whose relationships and degrees of overlap were visualized by UMAP. Due to physician-identified similarities, these topics were reduced into 13 categories. The most frequent topic category was messages about laboratory tests or imaging studies: 24.3%, followed by messages expressing appreciation: 18.9%, scheduling discussions: 15.6%, symptom-related messages: 11%, and treatment-related messages: 10.7%.Patient portal messages sent to a single institution radiation oncology department have increased dramatically in volume since implementation, corresponding to a broader national trend. NLP successfully identified common subject themes across patient messages, many of which are related to scheduling. This presents potential opportunities to apply NLP to automate message routing in the future." @default.
- W4387207411 created "2023-09-30" @default.
- W4387207411 creator A5003751225 @default.
- W4387207411 creator A5007748138 @default.
- W4387207411 creator A5008217338 @default.
- W4387207411 creator A5014383571 @default.
- W4387207411 creator A5022023139 @default.
- W4387207411 creator A5022187771 @default.
- W4387207411 creator A5024959372 @default.
- W4387207411 creator A5038208866 @default.
- W4387207411 creator A5044110862 @default.
- W4387207411 creator A5052413322 @default.
- W4387207411 creator A5060552563 @default.
- W4387207411 creator A5080027674 @default.
- W4387207411 creator A5084269946 @default.
- W4387207411 date "2023-10-01" @default.
- W4387207411 modified "2023-10-04" @default.
- W4387207411 title "Identifying Common Topics in Patient Portal Messages with Unsupervised Natural Language Processing" @default.
- W4387207411 doi "https://doi.org/10.1016/j.ijrobp.2023.06.1657" @default.
- W4387207411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37785473" @default.
- W4387207411 hasPublicationYear "2023" @default.
- W4387207411 type Work @default.
- W4387207411 citedByCount "0" @default.
- W4387207411 crossrefType "journal-article" @default.
- W4387207411 hasAuthorship W4387207411A5003751225 @default.
- W4387207411 hasAuthorship W4387207411A5007748138 @default.
- W4387207411 hasAuthorship W4387207411A5008217338 @default.
- W4387207411 hasAuthorship W4387207411A5014383571 @default.
- W4387207411 hasAuthorship W4387207411A5022023139 @default.
- W4387207411 hasAuthorship W4387207411A5022187771 @default.
- W4387207411 hasAuthorship W4387207411A5024959372 @default.
- W4387207411 hasAuthorship W4387207411A5038208866 @default.
- W4387207411 hasAuthorship W4387207411A5044110862 @default.
- W4387207411 hasAuthorship W4387207411A5052413322 @default.
- W4387207411 hasAuthorship W4387207411A5060552563 @default.
- W4387207411 hasAuthorship W4387207411A5080027674 @default.
- W4387207411 hasAuthorship W4387207411A5084269946 @default.
- W4387207411 hasConcept C111919701 @default.
- W4387207411 hasConcept C119060515 @default.
- W4387207411 hasConcept C119857082 @default.
- W4387207411 hasConcept C126322002 @default.
- W4387207411 hasConcept C136764020 @default.
- W4387207411 hasConcept C154945302 @default.
- W4387207411 hasConcept C204321447 @default.
- W4387207411 hasConcept C23123220 @default.
- W4387207411 hasConcept C2777120189 @default.
- W4387207411 hasConcept C2778476105 @default.
- W4387207411 hasConcept C41008148 @default.
- W4387207411 hasConcept C545542383 @default.
- W4387207411 hasConcept C71924100 @default.
- W4387207411 hasConceptScore W4387207411C111919701 @default.
- W4387207411 hasConceptScore W4387207411C119060515 @default.
- W4387207411 hasConceptScore W4387207411C119857082 @default.
- W4387207411 hasConceptScore W4387207411C126322002 @default.
- W4387207411 hasConceptScore W4387207411C136764020 @default.
- W4387207411 hasConceptScore W4387207411C154945302 @default.
- W4387207411 hasConceptScore W4387207411C204321447 @default.
- W4387207411 hasConceptScore W4387207411C23123220 @default.
- W4387207411 hasConceptScore W4387207411C2777120189 @default.
- W4387207411 hasConceptScore W4387207411C2778476105 @default.
- W4387207411 hasConceptScore W4387207411C41008148 @default.
- W4387207411 hasConceptScore W4387207411C545542383 @default.
- W4387207411 hasConceptScore W4387207411C71924100 @default.
- W4387207411 hasIssue "2" @default.
- W4387207411 hasLocation W43872074111 @default.
- W4387207411 hasLocation W43872074112 @default.
- W4387207411 hasOpenAccess W4387207411 @default.
- W4387207411 hasPrimaryLocation W43872074111 @default.
- W4387207411 hasRelatedWork W1994375637 @default.
- W4387207411 hasRelatedWork W2061253854 @default.
- W4387207411 hasRelatedWork W2113406795 @default.
- W4387207411 hasRelatedWork W2400079593 @default.
- W4387207411 hasRelatedWork W2748952813 @default.
- W4387207411 hasRelatedWork W2804686248 @default.
- W4387207411 hasRelatedWork W2899084033 @default.
- W4387207411 hasRelatedWork W2971392718 @default.
- W4387207411 hasRelatedWork W3162511055 @default.
- W4387207411 hasRelatedWork W3177161868 @default.
- W4387207411 hasVolume "117" @default.
- W4387207411 isParatext "false" @default.
- W4387207411 isRetracted "false" @default.
- W4387207411 workType "article" @default.