Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387207613> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387207613 endingPage "S118" @default.
- W4387207613 startingPage "S117" @default.
- W4387207613 abstract "A classical approach for evaluating normal tissue radiation response is to count the number of intestinal regenerating crypts in mouse histological images acquired after abdominal radiation. However, manual counting is time-consuming and subject to inter-observer variations. The goal of this study is to build a deep learning-based pipeline for automatically identifying intestinal regenerating crypts to facilitate high-throughput studies.Sixty-six healthy C57BL/6 female mice underwent 16 MeV whole abdominal electron irradiation. The small bowel was collected from each mouse 4 days post-irradiation, and 9 jejunal cross-sections from each were processed together in a single slide. The slides were stained with hematoxylin and eosin (H&E) and subsequently scanned (x20), providing one electronic histological image per mouse. Regenerating crypts, consisting of more than 10 basophilic crypt epithelial cells, were manually identified using point annotations in histological images. The pipeline was built to take the input of the image containing 9 cross sections and automatically identify the regenerating crypts on each cross section. It mainly consists of two components, cross section segmentation using intensity thresholding and morphological operations and crypt identification using a UNet. The dataset was randomly split into 46, 10, and 10 slide images for UNet training, validation, and testing. Each slide image was split into grid tiles with a voxel size of 200 × 200, and 40 × 40 square masks were placed with centers at manual point annotations on tiles with regenerating crypts. 5203/5198 tiles (w/wo crypt mask) were extracted to train UNet by minimizing dice loss. The mask probability map generated by the UNet was post-processed to identify the crypt position. Postprocessing hyperparameters were tuned using the validation dataset. The model accuracy was evaluated using the testing dataset by computing the mean absolute error (MAE) of the crypt number averaged across all cross sections.The number of regenerating crypts on testing cross sections ranges from 1 to 63. The testing cross-section-wise MAE achieved by the platform is 3.5±4.8 crypts. 81.25% of testing cross sections have absolute number differences less than or equal to 5 crypts.Our established deep learning-based pipeline can accurately count the number of regenerating crypts in mouse intestinal histological images. We have integrated it into an online platform that enables automatic crypt identification and allows users to interactively modify auto-identified crypt annotations. The acquired annotations from the platform will be used to finetune the deep learning model to achieve better identification performance." @default.
- W4387207613 created "2023-09-30" @default.
- W4387207613 creator A5003025241 @default.
- W4387207613 creator A5006396275 @default.
- W4387207613 creator A5008311156 @default.
- W4387207613 creator A5014755259 @default.
- W4387207613 creator A5016234124 @default.
- W4387207613 creator A5016420174 @default.
- W4387207613 creator A5024704039 @default.
- W4387207613 creator A5032293589 @default.
- W4387207613 creator A5038994179 @default.
- W4387207613 creator A5039606115 @default.
- W4387207613 creator A5058481348 @default.
- W4387207613 creator A5059684522 @default.
- W4387207613 creator A5069251147 @default.
- W4387207613 creator A5071400654 @default.
- W4387207613 creator A5072806273 @default.
- W4387207613 creator A5086733146 @default.
- W4387207613 creator A5090516617 @default.
- W4387207613 date "2023-10-01" @default.
- W4387207613 modified "2023-10-04" @default.
- W4387207613 title "Deep Learning-Based Pipeline for Automatic Identification of Intestinal Regenerating Crypts in Mouse Histological Images" @default.
- W4387207613 doi "https://doi.org/10.1016/j.ijrobp.2023.06.451" @default.
- W4387207613 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37784305" @default.
- W4387207613 hasPublicationYear "2023" @default.
- W4387207613 type Work @default.
- W4387207613 citedByCount "0" @default.
- W4387207613 crossrefType "journal-article" @default.
- W4387207613 hasAuthorship W4387207613A5003025241 @default.
- W4387207613 hasAuthorship W4387207613A5006396275 @default.
- W4387207613 hasAuthorship W4387207613A5008311156 @default.
- W4387207613 hasAuthorship W4387207613A5014755259 @default.
- W4387207613 hasAuthorship W4387207613A5016234124 @default.
- W4387207613 hasAuthorship W4387207613A5016420174 @default.
- W4387207613 hasAuthorship W4387207613A5024704039 @default.
- W4387207613 hasAuthorship W4387207613A5032293589 @default.
- W4387207613 hasAuthorship W4387207613A5038994179 @default.
- W4387207613 hasAuthorship W4387207613A5039606115 @default.
- W4387207613 hasAuthorship W4387207613A5058481348 @default.
- W4387207613 hasAuthorship W4387207613A5059684522 @default.
- W4387207613 hasAuthorship W4387207613A5069251147 @default.
- W4387207613 hasAuthorship W4387207613A5071400654 @default.
- W4387207613 hasAuthorship W4387207613A5072806273 @default.
- W4387207613 hasAuthorship W4387207613A5086733146 @default.
- W4387207613 hasAuthorship W4387207613A5090516617 @default.
- W4387207613 hasConcept C125473707 @default.
- W4387207613 hasConcept C142724271 @default.
- W4387207613 hasConcept C154945302 @default.
- W4387207613 hasConcept C19210678 @default.
- W4387207613 hasConcept C199360897 @default.
- W4387207613 hasConcept C38652104 @default.
- W4387207613 hasConcept C41008148 @default.
- W4387207613 hasConcept C43521106 @default.
- W4387207613 hasConcept C66090201 @default.
- W4387207613 hasConcept C71924100 @default.
- W4387207613 hasConcept C74864618 @default.
- W4387207613 hasConcept C89600930 @default.
- W4387207613 hasConceptScore W4387207613C125473707 @default.
- W4387207613 hasConceptScore W4387207613C142724271 @default.
- W4387207613 hasConceptScore W4387207613C154945302 @default.
- W4387207613 hasConceptScore W4387207613C19210678 @default.
- W4387207613 hasConceptScore W4387207613C199360897 @default.
- W4387207613 hasConceptScore W4387207613C38652104 @default.
- W4387207613 hasConceptScore W4387207613C41008148 @default.
- W4387207613 hasConceptScore W4387207613C43521106 @default.
- W4387207613 hasConceptScore W4387207613C66090201 @default.
- W4387207613 hasConceptScore W4387207613C71924100 @default.
- W4387207613 hasConceptScore W4387207613C74864618 @default.
- W4387207613 hasConceptScore W4387207613C89600930 @default.
- W4387207613 hasIssue "2" @default.
- W4387207613 hasLocation W43872076131 @default.
- W4387207613 hasLocation W43872076132 @default.
- W4387207613 hasOpenAccess W4387207613 @default.
- W4387207613 hasPrimaryLocation W43872076131 @default.
- W4387207613 hasRelatedWork W2079054095 @default.
- W4387207613 hasRelatedWork W2334889884 @default.
- W4387207613 hasRelatedWork W2339671668 @default.
- W4387207613 hasRelatedWork W2748952813 @default.
- W4387207613 hasRelatedWork W2782936816 @default.
- W4387207613 hasRelatedWork W2899084033 @default.
- W4387207613 hasRelatedWork W2902915427 @default.
- W4387207613 hasRelatedWork W3129544475 @default.
- W4387207613 hasRelatedWork W4285299921 @default.
- W4387207613 hasRelatedWork W4380366509 @default.
- W4387207613 hasVolume "117" @default.
- W4387207613 isParatext "false" @default.
- W4387207613 isRetracted "false" @default.
- W4387207613 workType "article" @default.