Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387207645> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387207645 endingPage "e639" @default.
- W4387207645 startingPage "e638" @default.
- W4387207645 abstract "MR guided conventional prostate radiotherapy requires agreement of bladder and rectum position, size, and shape with reference plan anatomy. In many instances, treatments may be delayed to allow optimal filling of these organs at risk (OARs). To account for such changes, we propose a patient specific deep learning based auto-segmentation (PS-DLAS) solution to implement pseudo (adapt-to-shape) ATS planning as a replacement for (adapt-to-position) ATP for conventionally fractionated treatments, and to generate auto-segmented contours for ATS SBRT treatments.A commercially available DLAS tool that allows to customize/re-train DLAS models to an individual patient was implemented and automated in 3 iterative steps: 1) training of initial PS-DLAS model based on the first daily MRI with manual contours for the patient, 2) using the trained model to auto-segment the next daily MRI (acquired at next fraction), and 3) re-training/updating the model with newly available daily MRI sets and the verified contours. Steps 1) and 3) were performed offline while the step 2 was online. The solution was tested using daily MRI sets collected for 6 prostate cancer patients treated with MR guided adaptive radiotherapy (MRgART) either in 5-fraction SBRT or conventionally fractionated with adapt-to-shape (ATS) or adapt-to-position (ATP) workflows on a 1.5T MR-Linac. The quality of the auto-segmented OAR contours, including bladder, penile bulb, prostate, rectum, and seminal vesicles, obtained in step 2) were assessed, where the acceptable contour slices (no editing required) were identified. Additionally, ATP was simulated using a pseudo ATS workflow on patient 6, allowing the PS-DLAS to be used on daily MRI sets and the obtained contours to be used in the daily plan optimization. The time saving and the plan quality of using the PS-DLAS were compared to those from the current standard clinical workflow.The times for the offline model training in steps 1) or 3) were < 50 minutes and the times of applying the updated PS-DLAS to auto-segment a daily MRI set in step 2) were within 1 minute using a hardware of Intel(R) Xeon(R) Gold 5222 CPU. Among the auto-segmented contour slices, 87%, 92%, 88%, 86% and 84% were found to be acceptable for bladder, penile bulb, prostate, rectum, and seminal vesicles, respectively. The time savings of using the PS-DLAS were about 7 minutes, compared to the manual contouring in the current ATS workflow. Manual editing was almost always required in 1-3 most superior slices for each organ. For the patient tested with the pseudo ATS, time saving was 10 minutes with comparable plan quality to the standard ATP workflow.In this study, we demonstrated use of a PS-DLAS approach to reduce contouring time in MR-guided ATS prostate radiotherapy. In addition, these results suggest a PS-DLAS approach combined with pseudo-ATS may reduce overall treatment times in conventionally fractionated MRgRT by eliminating time required for matching of OAR filling." @default.
- W4387207645 created "2023-09-30" @default.
- W4387207645 creator A5006174923 @default.
- W4387207645 creator A5013466201 @default.
- W4387207645 creator A5016118746 @default.
- W4387207645 creator A5057333651 @default.
- W4387207645 creator A5064770980 @default.
- W4387207645 creator A5067310306 @default.
- W4387207645 date "2023-10-01" @default.
- W4387207645 modified "2023-10-12" @default.
- W4387207645 title "Patient-Specific Deep Learning Auto-Segmentation for MR-Guided Adaptive Radiotherapy of Prostate Cancer" @default.
- W4387207645 doi "https://doi.org/10.1016/j.ijrobp.2023.06.2044" @default.
- W4387207645 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37785902" @default.
- W4387207645 hasPublicationYear "2023" @default.
- W4387207645 type Work @default.
- W4387207645 citedByCount "0" @default.
- W4387207645 crossrefType "journal-article" @default.
- W4387207645 hasAuthorship W4387207645A5006174923 @default.
- W4387207645 hasAuthorship W4387207645A5013466201 @default.
- W4387207645 hasAuthorship W4387207645A5016118746 @default.
- W4387207645 hasAuthorship W4387207645A5057333651 @default.
- W4387207645 hasAuthorship W4387207645A5064770980 @default.
- W4387207645 hasAuthorship W4387207645A5067310306 @default.
- W4387207645 hasConcept C121608353 @default.
- W4387207645 hasConcept C126322002 @default.
- W4387207645 hasConcept C126838900 @default.
- W4387207645 hasConcept C141071460 @default.
- W4387207645 hasConcept C143409427 @default.
- W4387207645 hasConcept C154945302 @default.
- W4387207645 hasConcept C19527891 @default.
- W4387207645 hasConcept C2776235491 @default.
- W4387207645 hasConcept C2780192828 @default.
- W4387207645 hasConcept C2781074409 @default.
- W4387207645 hasConcept C2989005 @default.
- W4387207645 hasConcept C31972630 @default.
- W4387207645 hasConcept C41008148 @default.
- W4387207645 hasConcept C509974204 @default.
- W4387207645 hasConcept C71924100 @default.
- W4387207645 hasConcept C89600930 @default.
- W4387207645 hasConceptScore W4387207645C121608353 @default.
- W4387207645 hasConceptScore W4387207645C126322002 @default.
- W4387207645 hasConceptScore W4387207645C126838900 @default.
- W4387207645 hasConceptScore W4387207645C141071460 @default.
- W4387207645 hasConceptScore W4387207645C143409427 @default.
- W4387207645 hasConceptScore W4387207645C154945302 @default.
- W4387207645 hasConceptScore W4387207645C19527891 @default.
- W4387207645 hasConceptScore W4387207645C2776235491 @default.
- W4387207645 hasConceptScore W4387207645C2780192828 @default.
- W4387207645 hasConceptScore W4387207645C2781074409 @default.
- W4387207645 hasConceptScore W4387207645C2989005 @default.
- W4387207645 hasConceptScore W4387207645C31972630 @default.
- W4387207645 hasConceptScore W4387207645C41008148 @default.
- W4387207645 hasConceptScore W4387207645C509974204 @default.
- W4387207645 hasConceptScore W4387207645C71924100 @default.
- W4387207645 hasConceptScore W4387207645C89600930 @default.
- W4387207645 hasIssue "2" @default.
- W4387207645 hasLocation W43872076451 @default.
- W4387207645 hasLocation W43872076452 @default.
- W4387207645 hasOpenAccess W4387207645 @default.
- W4387207645 hasPrimaryLocation W43872076451 @default.
- W4387207645 hasRelatedWork W1669643531 @default.
- W4387207645 hasRelatedWork W1982826852 @default.
- W4387207645 hasRelatedWork W2005437358 @default.
- W4387207645 hasRelatedWork W2008656436 @default.
- W4387207645 hasRelatedWork W2023558673 @default.
- W4387207645 hasRelatedWork W2110230079 @default.
- W4387207645 hasRelatedWork W2134924024 @default.
- W4387207645 hasRelatedWork W2410191098 @default.
- W4387207645 hasRelatedWork W2517104666 @default.
- W4387207645 hasRelatedWork W2613186388 @default.
- W4387207645 hasVolume "117" @default.
- W4387207645 isParatext "false" @default.
- W4387207645 isRetracted "false" @default.
- W4387207645 workType "article" @default.