Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387208091> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387208091 endingPage "S119" @default.
- W4387208091 startingPage "S118" @default.
- W4387208091 abstract "Deep learning-based automatic segmentation (DLAS) techniques offer limited success for abdominal organs on MRI, requiring substantial editing time. We have previously developed a deep learning based automatic contour correction (ACC) technique that can correct for inaccurate DLAS contours of bowels on MRI, reducing the manual editing time in MR-guided online adaptive radiation therapy (MRgART). This study aims to develop deep learning-based ACC models for pancreas and duodenum that are particularly difficult to contour either manually or with DLAS.Dense UNet, a deep learning algorithm that combines UNet with dense blocks, was trained to create ACC models. Organ-specific models were trained for pancreas and duodenum contours obtained from a research DLAS tool on MRIs from a 1.5T MR-Linac. The training dataset contained MRI slices paired with DLAS contours from 54 abdominal MRL sets along with ground truth contours and 540 additional augmented sets created by shifting, rotating, and scaling each organ along with the contours and varying the noise and bias field for each patient set. Each DLAS contour was classified into the acceptable (no additional edits required), minor edit (only simple edits required), or major edit category based on the expected editing effort determined using a contour classification model developed in a separate study. The ACC models were trained for the slices requiring minor edit and major edit separately. Performance of the obtained models were tested using an independent 11 MRI sets in term of the change of contour category based on the contour classification model.After applying the duodenum ACC model to the testing datasets, 16% (27/165) and 5% (8/178) of the minor and major edits' slices, respectively, improved to acceptable and 31% (54/178) of the major edit slices improved to minor edits. Furthermore, the total percentage of acceptable contours grew from 10% (36/378) to 19% (71/378) and the percentage of the major edit slices reduced from 47% (178/378) to 30% (115/378). After applying the pancreas ACC model to the testing datasets, 32% (47/143) and 1% (1/96) of the minor and major edits' slices, respectively, improved to acceptable and 49% (47/96) of the major edit slices improved to minor edit slices. Furthermore, the total percentage of acceptable contours grew from 14% (38/277) to 31% (86/277) and the percentage of major edit slices reduced from 35% (96/277) to 17% (48/277).Deep learning based automatic contour corrections can substantially improve inaccurate DLAS contours of pancreas and duodenum on MRI that would otherwise require time-consuming edits, resulting in less manual intervention and increased efficiency during MRgART." @default.
- W4387208091 created "2023-09-30" @default.
- W4387208091 creator A5013466201 @default.
- W4387208091 creator A5016118746 @default.
- W4387208091 creator A5042973046 @default.
- W4387208091 creator A5047603679 @default.
- W4387208091 creator A5066550576 @default.
- W4387208091 creator A5071301994 @default.
- W4387208091 creator A5080094274 @default.
- W4387208091 creator A5090897322 @default.
- W4387208091 date "2023-10-01" @default.
- W4387208091 modified "2023-10-04" @default.
- W4387208091 title "Organ Specific Deep Learning-Based Correction of Inaccurate Auto-Segmentation on Abdominal MRI" @default.
- W4387208091 doi "https://doi.org/10.1016/j.ijrobp.2023.06.453" @default.
- W4387208091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37784307" @default.
- W4387208091 hasPublicationYear "2023" @default.
- W4387208091 type Work @default.
- W4387208091 citedByCount "0" @default.
- W4387208091 crossrefType "journal-article" @default.
- W4387208091 hasAuthorship W4387208091A5013466201 @default.
- W4387208091 hasAuthorship W4387208091A5016118746 @default.
- W4387208091 hasAuthorship W4387208091A5042973046 @default.
- W4387208091 hasAuthorship W4387208091A5047603679 @default.
- W4387208091 hasAuthorship W4387208091A5066550576 @default.
- W4387208091 hasAuthorship W4387208091A5071301994 @default.
- W4387208091 hasAuthorship W4387208091A5080094274 @default.
- W4387208091 hasAuthorship W4387208091A5090897322 @default.
- W4387208091 hasConcept C108583219 @default.
- W4387208091 hasConcept C141071460 @default.
- W4387208091 hasConcept C146849305 @default.
- W4387208091 hasConcept C154945302 @default.
- W4387208091 hasConcept C2776809568 @default.
- W4387208091 hasConcept C31972630 @default.
- W4387208091 hasConcept C41008148 @default.
- W4387208091 hasConcept C71924100 @default.
- W4387208091 hasConcept C89600930 @default.
- W4387208091 hasConceptScore W4387208091C108583219 @default.
- W4387208091 hasConceptScore W4387208091C141071460 @default.
- W4387208091 hasConceptScore W4387208091C146849305 @default.
- W4387208091 hasConceptScore W4387208091C154945302 @default.
- W4387208091 hasConceptScore W4387208091C2776809568 @default.
- W4387208091 hasConceptScore W4387208091C31972630 @default.
- W4387208091 hasConceptScore W4387208091C41008148 @default.
- W4387208091 hasConceptScore W4387208091C71924100 @default.
- W4387208091 hasConceptScore W4387208091C89600930 @default.
- W4387208091 hasIssue "2" @default.
- W4387208091 hasLocation W43872080911 @default.
- W4387208091 hasLocation W43872080912 @default.
- W4387208091 hasOpenAccess W4387208091 @default.
- W4387208091 hasPrimaryLocation W43872080911 @default.
- W4387208091 hasRelatedWork W1669643531 @default.
- W4387208091 hasRelatedWork W1982826852 @default.
- W4387208091 hasRelatedWork W2005437358 @default.
- W4387208091 hasRelatedWork W2008656436 @default.
- W4387208091 hasRelatedWork W2023558673 @default.
- W4387208091 hasRelatedWork W2110230079 @default.
- W4387208091 hasRelatedWork W2134924024 @default.
- W4387208091 hasRelatedWork W2517104666 @default.
- W4387208091 hasRelatedWork W2613186388 @default.
- W4387208091 hasRelatedWork W2790662084 @default.
- W4387208091 hasVolume "117" @default.
- W4387208091 isParatext "false" @default.
- W4387208091 isRetracted "false" @default.
- W4387208091 workType "article" @default.