Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387208149> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4387208149 endingPage "S55" @default.
- W4387208149 startingPage "S55" @default.
- W4387208149 abstract "Radiotherapy (RT) is essential in head and neck cancer (HNC) treatments, but often causes significant toxicity. Different machine learning models have shown promise in predicting RT-induced toxicity, but none have yet integrated the fluctuating anatomical changes. By integrating daily cone-beam CTs (CBCT) allowing sequential anatomical views, our aim is to build a dynamic predictive model for three major HNC RT toxicities: reactive feeding tube placement, hospitalization and radionecrosis (RN).292 HNC cases treated with curative RT between 2017 and 2019 at our institution were retrospectively analyzed for clinical and radiological data. VoxelMorph, a deep deformable registration model, integrated the daily anatomical deformations between each CBCT and the planning CT, then converted them to Jacobian determinant matrix (Jf). Resnet, a convolutional neural network with multiple layers was trained using a 5-fold cross validation to integrate both radiological and clinical data. Each toxicity was classified as a binary decision using the cross-entropy loss to account for a class imbalance. Its predictive performance was compared to the baseline model using only clinical data.The cohort included 78% men and 22% women, with a median age of 63 years (range 35-84). Primary cancer sites were 46% oropharynx, 19% larynx, 14% oral cavity, 7.5% nasopharynx, 5% hypopharynx, 4% unknown primary and 5% others; and stage ranged between Tx-4b N0 and 3b M0 (AJCC 8th Ed). Induction chemotherapy, concurrent chemotherapy, and adjuvant RT was used in 9%, 57% and 20% of patients, respectively. The incidence of feeding tube, hospitalization and RN was 19.9%, 7.2%, and 3.8%, respectively. Integrating Jf from the 10th RT CBCT showed better accuracy for each toxicity prediction: feeding tube (69.1% > 57.2%), hospitalization (75.3% > 63.1%) and RN (85.8% > 75.7%). Integrating both the raw CBCT and Jf improved hospitalization prediction (79.0% > 73.6%). Substituting Jf for the raw CBCT improved the prediction for RN (79.7% > 74.7%) and hospitalization (73.6% > 64.4%). For feeding tube, predictive performance of the Jf model trained against deformations showed a positive correlation between its performance and the RT received (r2 > 0.9) with increasing RT fractions, with a maximum accuracy of 83.1% at the 25th fraction. No such correlation was found for RN or hospitalization prediction.To our knowledge, this is the first study showing promising results to predict HNC RT toxicities using daily per-treatment CBCT. Next steps involve integrating both the radiomic and the dosimetric inputs to build a more powerful model. This could expand to predict therapeutic outcomes and, ultimately, could guide decisions in individualized RT." @default.
- W4387208149 created "2023-09-30" @default.
- W4387208149 creator A5010225863 @default.
- W4387208149 creator A5011580007 @default.
- W4387208149 creator A5026300491 @default.
- W4387208149 creator A5033789542 @default.
- W4387208149 creator A5037725319 @default.
- W4387208149 creator A5039187492 @default.
- W4387208149 creator A5044014459 @default.
- W4387208149 creator A5057484084 @default.
- W4387208149 creator A5063012663 @default.
- W4387208149 creator A5064078958 @default.
- W4387208149 creator A5070949662 @default.
- W4387208149 creator A5071800883 @default.
- W4387208149 creator A5080250783 @default.
- W4387208149 creator A5088747579 @default.
- W4387208149 date "2023-10-01" @default.
- W4387208149 modified "2023-10-16" @default.
- W4387208149 title "Dynamic Prediction of Toxicities in Head and Neck Cancer Radiotherapy by 3D Convolutional Neural Network Using Daily Cone-Beam CTs" @default.
- W4387208149 doi "https://doi.org/10.1016/j.ijrobp.2023.06.346" @default.
- W4387208149 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37784524" @default.
- W4387208149 hasPublicationYear "2023" @default.
- W4387208149 type Work @default.
- W4387208149 citedByCount "0" @default.
- W4387208149 crossrefType "journal-article" @default.
- W4387208149 hasAuthorship W4387208149A5010225863 @default.
- W4387208149 hasAuthorship W4387208149A5011580007 @default.
- W4387208149 hasAuthorship W4387208149A5026300491 @default.
- W4387208149 hasAuthorship W4387208149A5033789542 @default.
- W4387208149 hasAuthorship W4387208149A5037725319 @default.
- W4387208149 hasAuthorship W4387208149A5039187492 @default.
- W4387208149 hasAuthorship W4387208149A5044014459 @default.
- W4387208149 hasAuthorship W4387208149A5057484084 @default.
- W4387208149 hasAuthorship W4387208149A5063012663 @default.
- W4387208149 hasAuthorship W4387208149A5064078958 @default.
- W4387208149 hasAuthorship W4387208149A5070949662 @default.
- W4387208149 hasAuthorship W4387208149A5071800883 @default.
- W4387208149 hasAuthorship W4387208149A5080250783 @default.
- W4387208149 hasAuthorship W4387208149A5088747579 @default.
- W4387208149 hasConcept C126838900 @default.
- W4387208149 hasConcept C141071460 @default.
- W4387208149 hasConcept C190892606 @default.
- W4387208149 hasConcept C2775908122 @default.
- W4387208149 hasConcept C2776530083 @default.
- W4387208149 hasConcept C2777416452 @default.
- W4387208149 hasConcept C2778045676 @default.
- W4387208149 hasConcept C2780474809 @default.
- W4387208149 hasConcept C2989005 @default.
- W4387208149 hasConcept C509974204 @default.
- W4387208149 hasConcept C71924100 @default.
- W4387208149 hasConceptScore W4387208149C126838900 @default.
- W4387208149 hasConceptScore W4387208149C141071460 @default.
- W4387208149 hasConceptScore W4387208149C190892606 @default.
- W4387208149 hasConceptScore W4387208149C2775908122 @default.
- W4387208149 hasConceptScore W4387208149C2776530083 @default.
- W4387208149 hasConceptScore W4387208149C2777416452 @default.
- W4387208149 hasConceptScore W4387208149C2778045676 @default.
- W4387208149 hasConceptScore W4387208149C2780474809 @default.
- W4387208149 hasConceptScore W4387208149C2989005 @default.
- W4387208149 hasConceptScore W4387208149C509974204 @default.
- W4387208149 hasConceptScore W4387208149C71924100 @default.
- W4387208149 hasIssue "2" @default.
- W4387208149 hasLocation W43872081491 @default.
- W4387208149 hasLocation W43872081492 @default.
- W4387208149 hasOpenAccess W4387208149 @default.
- W4387208149 hasPrimaryLocation W43872081491 @default.
- W4387208149 hasRelatedWork W1974239774 @default.
- W4387208149 hasRelatedWork W2146329765 @default.
- W4387208149 hasRelatedWork W2224258684 @default.
- W4387208149 hasRelatedWork W2408170775 @default.
- W4387208149 hasRelatedWork W2444297525 @default.
- W4387208149 hasRelatedWork W2462717890 @default.
- W4387208149 hasRelatedWork W2890419311 @default.
- W4387208149 hasRelatedWork W3138931017 @default.
- W4387208149 hasRelatedWork W4245083039 @default.
- W4387208149 hasRelatedWork W3108134492 @default.
- W4387208149 hasVolume "117" @default.
- W4387208149 isParatext "false" @default.
- W4387208149 isRetracted "false" @default.
- W4387208149 workType "article" @default.