Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387208230> ?p ?o ?g. }
- W4387208230 endingPage "3019" @default.
- W4387208230 startingPage "3001" @default.
- W4387208230 abstract "The integration of Smart Grid technology and conceptual Industry 5.0 has paved the way for advanced energy management systems that enhance efficiency and revolutionized the parallel integration of power sources in a sustainable manner. However, this digitization has opened a new stream of the threat and opportunities of electricity theft posing a significant challenge to the security and reliability of Smart Grid networks. In this paper, we propose a secure and reliable theft detection technique using deep federated learning (FL) mechanism. The technique leverages the collaborative power of FL to train a Convolutional Gated Recurrent Unit (ConvGRU) model on distributed data sources without compromising data privacy. The training deep learning model backbone consists of a ConvGRU model that combines convolutional and gated recurrent units to capture spatial and temporal patterns in electricity consumption data. An improvised preprocessing mechanism and hyperparameter tuning is done to facilitate FL mechanism. The halving randomized search algorithm is used for hyperparameters tuning of the ConvGRU model. The impact of hyperparameters involved in the ConvGRU model such as number of layers, filters, kernel size, activation function, pooling, GRU layers, hidden state dimension, learning rate, and the dropout rate is elaborated. The proposed technique achieves promising results, with high accuracy, precision, recall, and F1 score, demonstrating its efficacy in detecting electricity theft in Smart Grid networks. Comparative analysis with existing techniques reveal the superior performance of the deep FL-based ConvGRU model. The findings highlight the potential of this approach in enhancing the security and efficiency of Smart Grid systems while preserving data privacy." @default.
- W4387208230 created "2023-09-30" @default.
- W4387208230 creator A5005186462 @default.
- W4387208230 creator A5011760960 @default.
- W4387208230 creator A5011984019 @default.
- W4387208230 creator A5068287117 @default.
- W4387208230 creator A5085234563 @default.
- W4387208230 creator A5087578160 @default.
- W4387208230 creator A5092972862 @default.
- W4387208230 date "2023-11-01" @default.
- W4387208230 modified "2023-10-16" @default.
- W4387208230 title "Step towards secure and reliable smart grids in Industry 5.0: A federated learning assisted hybrid deep learning model for electricity theft detection using smart meters" @default.
- W4387208230 cites W1984419556 @default.
- W4387208230 cites W2008668719 @default.
- W4387208230 cites W2169671599 @default.
- W4387208230 cites W2212529815 @default.
- W4387208230 cites W2222845742 @default.
- W4387208230 cites W2328146686 @default.
- W4387208230 cites W2411244218 @default.
- W4387208230 cites W2623472830 @default.
- W4387208230 cites W2771171849 @default.
- W4387208230 cites W2790789559 @default.
- W4387208230 cites W2793916350 @default.
- W4387208230 cites W2894817759 @default.
- W4387208230 cites W2912213068 @default.
- W4387208230 cites W2954104732 @default.
- W4387208230 cites W2970705010 @default.
- W4387208230 cites W2978986055 @default.
- W4387208230 cites W3011935608 @default.
- W4387208230 cites W3016378036 @default.
- W4387208230 cites W3019994830 @default.
- W4387208230 cites W3022246579 @default.
- W4387208230 cites W3086809868 @default.
- W4387208230 cites W3090158923 @default.
- W4387208230 cites W3096197025 @default.
- W4387208230 cites W3108590825 @default.
- W4387208230 cites W3115668312 @default.
- W4387208230 cites W3123459983 @default.
- W4387208230 cites W3160464491 @default.
- W4387208230 cites W3184032996 @default.
- W4387208230 cites W3185631424 @default.
- W4387208230 cites W3187784948 @default.
- W4387208230 cites W3195238303 @default.
- W4387208230 cites W3201079611 @default.
- W4387208230 cites W4206372987 @default.
- W4387208230 cites W4210830905 @default.
- W4387208230 cites W4225552947 @default.
- W4387208230 cites W4285392741 @default.
- W4387208230 cites W4293530457 @default.
- W4387208230 cites W4300817754 @default.
- W4387208230 cites W4309145873 @default.
- W4387208230 cites W4313414603 @default.
- W4387208230 cites W4366310817 @default.
- W4387208230 cites W4380194044 @default.
- W4387208230 cites W4383904629 @default.
- W4387208230 cites W4385327343 @default.
- W4387208230 cites W4387455323 @default.
- W4387208230 doi "https://doi.org/10.1016/j.egyr.2023.09.100" @default.
- W4387208230 hasPublicationYear "2023" @default.
- W4387208230 type Work @default.
- W4387208230 citedByCount "0" @default.
- W4387208230 crossrefType "journal-article" @default.
- W4387208230 hasAuthorship W4387208230A5005186462 @default.
- W4387208230 hasAuthorship W4387208230A5011760960 @default.
- W4387208230 hasAuthorship W4387208230A5011984019 @default.
- W4387208230 hasAuthorship W4387208230A5068287117 @default.
- W4387208230 hasAuthorship W4387208230A5085234563 @default.
- W4387208230 hasAuthorship W4387208230A5087578160 @default.
- W4387208230 hasAuthorship W4387208230A5092972862 @default.
- W4387208230 hasBestOaLocation W43872082301 @default.
- W4387208230 hasConcept C10551718 @default.
- W4387208230 hasConcept C10558101 @default.
- W4387208230 hasConcept C108583219 @default.
- W4387208230 hasConcept C119599485 @default.
- W4387208230 hasConcept C119857082 @default.
- W4387208230 hasConcept C124101348 @default.
- W4387208230 hasConcept C127413603 @default.
- W4387208230 hasConcept C154945302 @default.
- W4387208230 hasConcept C41008148 @default.
- W4387208230 hasConcept C81363708 @default.
- W4387208230 hasConcept C8642999 @default.
- W4387208230 hasConceptScore W4387208230C10551718 @default.
- W4387208230 hasConceptScore W4387208230C10558101 @default.
- W4387208230 hasConceptScore W4387208230C108583219 @default.
- W4387208230 hasConceptScore W4387208230C119599485 @default.
- W4387208230 hasConceptScore W4387208230C119857082 @default.
- W4387208230 hasConceptScore W4387208230C124101348 @default.
- W4387208230 hasConceptScore W4387208230C127413603 @default.
- W4387208230 hasConceptScore W4387208230C154945302 @default.
- W4387208230 hasConceptScore W4387208230C41008148 @default.
- W4387208230 hasConceptScore W4387208230C81363708 @default.
- W4387208230 hasConceptScore W4387208230C8642999 @default.
- W4387208230 hasFunder F4320327751 @default.
- W4387208230 hasLocation W43872082301 @default.
- W4387208230 hasOpenAccess W4387208230 @default.
- W4387208230 hasPrimaryLocation W43872082301 @default.
- W4387208230 hasRelatedWork W2140186469 @default.
- W4387208230 hasRelatedWork W3029198973 @default.