Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387208974> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4387208974 endingPage "161" @default.
- W4387208974 startingPage "156" @default.
- W4387208974 abstract "Biometric person recognition systems are becoming increasingly important due to their use in places requiring high security. Since it includes the physical and behavioral characteristics of people, the iris structure, which is a traditional person recognition system, is more secure than methods such as fingerprints or speech. In this study, a deep learning-based person classification/recognition model is proposed. The Gesture Recognition and Biometrics ElectroMyogram (GrabMyo) dataset from the open access PhysioNet database was used. With the 28-channel EMG device, 10 people were asked to make a fist movement with their hand. During the fist movement, data were recorded with the EMG device from the arm and wrist for 5 seconds with a sampling frequency of 2048. The EMD method was chosen to determine the spectral properties of EMG signals. With the EMD method, 4 IMF signal vectors were obtained from the high frequency components of the EMG signals. The classification performance effect of the feature vector is increased by using statistical methods for each IMF signal vector. Feature vectors are classified with CNN and LSTM methods from deep learning algorithms. Accuracy, Precision, Sensitivity and F-Score parameters were used to determine the performance of the developed model. An accuracy value of 95.57% was obtained in the model developed with the CNN method. In the LSTM method, the accuracy value was 93.88%. It is explained that the deep learning model proposed in this study can be effectively used as a biometric person recognition system for person recognition or classification problems with the EMG signals obtained during the fist movement. In addition, it is predicted that the proposed model can be used effectively in the design of future person recognition systems." @default.
- W4387208974 created "2023-09-30" @default.
- W4387208974 creator A5014596039 @default.
- W4387208974 creator A5070855436 @default.
- W4387208974 creator A5092972976 @default.
- W4387208974 date "2023-09-30" @default.
- W4387208974 modified "2023-10-09" @default.
- W4387208974 title "Biometric Personal Classification with Deep Learning Using EMG Signals" @default.
- W4387208974 cites W1921598571 @default.
- W4387208974 cites W2007221293 @default.
- W4387208974 cites W2062715730 @default.
- W4387208974 cites W2504270968 @default.
- W4387208974 cites W2781895281 @default.
- W4387208974 cites W2909947941 @default.
- W4387208974 cites W2916700883 @default.
- W4387208974 cites W2945812131 @default.
- W4387208974 cites W2999874993 @default.
- W4387208974 cites W3015418301 @default.
- W4387208974 cites W3021229042 @default.
- W4387208974 cites W3037235457 @default.
- W4387208974 cites W3082984679 @default.
- W4387208974 cites W3115616859 @default.
- W4387208974 cites W3120367727 @default.
- W4387208974 cites W3155408302 @default.
- W4387208974 cites W3183648003 @default.
- W4387208974 cites W3202955105 @default.
- W4387208974 cites W4206055939 @default.
- W4387208974 cites W4221157599 @default.
- W4387208974 cites W4280535111 @default.
- W4387208974 cites W4283738346 @default.
- W4387208974 cites W4318572641 @default.
- W4387208974 cites W4385627208 @default.
- W4387208974 doi "https://doi.org/10.30516/bilgesci.1344337" @default.
- W4387208974 hasPublicationYear "2023" @default.
- W4387208974 type Work @default.
- W4387208974 citedByCount "0" @default.
- W4387208974 crossrefType "journal-article" @default.
- W4387208974 hasAuthorship W4387208974A5014596039 @default.
- W4387208974 hasAuthorship W4387208974A5070855436 @default.
- W4387208974 hasAuthorship W4387208974A5092972976 @default.
- W4387208974 hasBestOaLocation W43872089741 @default.
- W4387208974 hasConcept C108583219 @default.
- W4387208974 hasConcept C12267149 @default.
- W4387208974 hasConcept C138885662 @default.
- W4387208974 hasConcept C153180895 @default.
- W4387208974 hasConcept C154945302 @default.
- W4387208974 hasConcept C184297639 @default.
- W4387208974 hasConcept C199360897 @default.
- W4387208974 hasConcept C2776401178 @default.
- W4387208974 hasConcept C2779843651 @default.
- W4387208974 hasConcept C2780573568 @default.
- W4387208974 hasConcept C28490314 @default.
- W4387208974 hasConcept C41008148 @default.
- W4387208974 hasConcept C41895202 @default.
- W4387208974 hasConcept C42407357 @default.
- W4387208974 hasConcept C52622490 @default.
- W4387208974 hasConcept C83665646 @default.
- W4387208974 hasConcept C86803240 @default.
- W4387208974 hasConceptScore W4387208974C108583219 @default.
- W4387208974 hasConceptScore W4387208974C12267149 @default.
- W4387208974 hasConceptScore W4387208974C138885662 @default.
- W4387208974 hasConceptScore W4387208974C153180895 @default.
- W4387208974 hasConceptScore W4387208974C154945302 @default.
- W4387208974 hasConceptScore W4387208974C184297639 @default.
- W4387208974 hasConceptScore W4387208974C199360897 @default.
- W4387208974 hasConceptScore W4387208974C2776401178 @default.
- W4387208974 hasConceptScore W4387208974C2779843651 @default.
- W4387208974 hasConceptScore W4387208974C2780573568 @default.
- W4387208974 hasConceptScore W4387208974C28490314 @default.
- W4387208974 hasConceptScore W4387208974C41008148 @default.
- W4387208974 hasConceptScore W4387208974C41895202 @default.
- W4387208974 hasConceptScore W4387208974C42407357 @default.
- W4387208974 hasConceptScore W4387208974C52622490 @default.
- W4387208974 hasConceptScore W4387208974C83665646 @default.
- W4387208974 hasConceptScore W4387208974C86803240 @default.
- W4387208974 hasIssue "2" @default.
- W4387208974 hasLocation W43872089741 @default.
- W4387208974 hasLocation W43872089742 @default.
- W4387208974 hasOpenAccess W4387208974 @default.
- W4387208974 hasPrimaryLocation W43872089741 @default.
- W4387208974 hasRelatedWork W2110299330 @default.
- W4387208974 hasRelatedWork W223755483 @default.
- W4387208974 hasRelatedWork W2259290157 @default.
- W4387208974 hasRelatedWork W2374390709 @default.
- W4387208974 hasRelatedWork W2381872057 @default.
- W4387208974 hasRelatedWork W2619970069 @default.
- W4387208974 hasRelatedWork W3031794605 @default.
- W4387208974 hasRelatedWork W33025348 @default.
- W4387208974 hasRelatedWork W2182410608 @default.
- W4387208974 hasRelatedWork W3202401170 @default.
- W4387208974 hasVolume "7" @default.
- W4387208974 isParatext "false" @default.
- W4387208974 isRetracted "false" @default.
- W4387208974 workType "article" @default.