Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387212981> ?p ?o ?g. }
- W4387212981 endingPage "119149" @default.
- W4387212981 startingPage "119149" @default.
- W4387212981 abstract "The recent agricultural expansion in the Matopiba region, Brazil's new agricultural frontier, has raised questions about the risk of increasing soil organic carbon (SOC) loss as large areas of native vegetation (NV; i.e., Cerrado biome) have been replaced by large-scale mechanized agriculture. Although sustainable managements, such as integrated crop-livestock (ICL) systems, are considered strategic to counterbalance the SOC loss associated with land-use change (LUC) while keeping food production, little is known about their long-term effects on SOC stocks in the Matopiba region. To this end, we used the DayCent model to simulate the effects of converting the management commonly used in this region, i.e., soybean-cotton rotation under no-tillage (NT), into ICL systems with distinct levels of intensification (e.g., crop rotations: soybean-pasture and soybean-pasture-cotton; soil and crop management: grass irrigation, scarification/harrowing, and length of grass cultivation) on long term SOC dynamics. Additionally, data from two projected climate scenarios: SSP2-4.5 [greenhouse gases emissions (GHG) will not change markedly over time and global temperature will increase by 2.0 °C by 2060] and SSP5-8.5 (marked changes in GHG emissions are expected to occur resulting in an increase of 2.4 and 4.4 °C in global temperature in the middle and at the end of the century) were included in our simulations to evaluate climate change effects on SOC dynamics in this region. Based on a 50-yr-time frame simulation, we observed that SOC stocks under ICL systems were, on average, 23% and 47% higher than in the NV (36.9 Mg ha−1) and soybean-cotton rotation under NT (30.9 Mg ha−1), respectively. Growing grasses interlaid with crops was crucial to increase SOC stocks even when disruptive soil practices were followed. Although the irrigation of grass resulted in an early increase of SOC stocks and a higher pasture stoking rate, it did not increase SOC stocks in the long term compared to non-irrigated treatments. The SSP2-4.5 and SSP5-8.5 climate scenarios had little effects on SOC dynamics in the simulated ICL systems. However, additional SOC loss (∼0.065 Mg ha−1 yr−1) is predicted to occur if the current management is not improved. These findings can help guide management decisions for the Matopiba region, Brazil, to alleviate the anthropogenic pressure associated with agriculture development. More broadly, they confirm that crop-livestock integration in croplands is a successful strategy to regenerate SOC." @default.
- W4387212981 created "2023-10-01" @default.
- W4387212981 creator A5006700374 @default.
- W4387212981 creator A5008666242 @default.
- W4387212981 creator A5032355515 @default.
- W4387212981 creator A5044373059 @default.
- W4387212981 creator A5045880424 @default.
- W4387212981 creator A5051326453 @default.
- W4387212981 creator A5069435150 @default.
- W4387212981 date "2023-12-01" @default.
- W4387212981 modified "2023-10-08" @default.
- W4387212981 title "Simulating soil C dynamics under intensive agricultural systems and climate change scenarios in the Matopiba region, Brazil" @default.
- W4387212981 cites W1492033124 @default.
- W4387212981 cites W1615875926 @default.
- W4387212981 cites W1759991378 @default.
- W4387212981 cites W180836830 @default.
- W4387212981 cites W1810287876 @default.
- W4387212981 cites W1966219518 @default.
- W4387212981 cites W1978715721 @default.
- W4387212981 cites W1980621655 @default.
- W4387212981 cites W1998928559 @default.
- W4387212981 cites W2006543540 @default.
- W4387212981 cites W2015262491 @default.
- W4387212981 cites W2036709573 @default.
- W4387212981 cites W2043928145 @default.
- W4387212981 cites W2057619574 @default.
- W4387212981 cites W2059685797 @default.
- W4387212981 cites W2065706053 @default.
- W4387212981 cites W2081157609 @default.
- W4387212981 cites W2093598146 @default.
- W4387212981 cites W2094479644 @default.
- W4387212981 cites W2103842878 @default.
- W4387212981 cites W2108744281 @default.
- W4387212981 cites W2114413780 @default.
- W4387212981 cites W2128385410 @default.
- W4387212981 cites W2132525728 @default.
- W4387212981 cites W2137881932 @default.
- W4387212981 cites W2145174872 @default.
- W4387212981 cites W2158330888 @default.
- W4387212981 cites W2193503481 @default.
- W4387212981 cites W2314721381 @default.
- W4387212981 cites W2328487243 @default.
- W4387212981 cites W2337225114 @default.
- W4387212981 cites W2365099516 @default.
- W4387212981 cites W2515941837 @default.
- W4387212981 cites W2572142200 @default.
- W4387212981 cites W2745770579 @default.
- W4387212981 cites W2748850103 @default.
- W4387212981 cites W2790329997 @default.
- W4387212981 cites W2792565380 @default.
- W4387212981 cites W2794535028 @default.
- W4387212981 cites W2800720856 @default.
- W4387212981 cites W2803474315 @default.
- W4387212981 cites W2905333251 @default.
- W4387212981 cites W2906933224 @default.
- W4387212981 cites W2909115042 @default.
- W4387212981 cites W2959168258 @default.
- W4387212981 cites W2990591357 @default.
- W4387212981 cites W2994236314 @default.
- W4387212981 cites W2998527577 @default.
- W4387212981 cites W3007465603 @default.
- W4387212981 cites W3011738444 @default.
- W4387212981 cites W3015277487 @default.
- W4387212981 cites W3048501727 @default.
- W4387212981 cites W3091154145 @default.
- W4387212981 cites W3094307856 @default.
- W4387212981 cites W3094725717 @default.
- W4387212981 cites W3095582665 @default.
- W4387212981 cites W3095638759 @default.
- W4387212981 cites W3130291671 @default.
- W4387212981 cites W3156523204 @default.
- W4387212981 cites W3162996510 @default.
- W4387212981 cites W3197626806 @default.
- W4387212981 cites W3207023017 @default.
- W4387212981 cites W4206989728 @default.
- W4387212981 cites W4210477895 @default.
- W4387212981 cites W4211257513 @default.
- W4387212981 cites W4220908075 @default.
- W4387212981 cites W4226338750 @default.
- W4387212981 cites W4294176200 @default.
- W4387212981 cites W4294991751 @default.
- W4387212981 cites W4307291355 @default.
- W4387212981 cites W4375859319 @default.
- W4387212981 cites W4376595808 @default.
- W4387212981 doi "https://doi.org/10.1016/j.jenvman.2023.119149" @default.
- W4387212981 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37783087" @default.
- W4387212981 hasPublicationYear "2023" @default.
- W4387212981 type Work @default.
- W4387212981 citedByCount "0" @default.
- W4387212981 crossrefType "journal-article" @default.
- W4387212981 hasAuthorship W4387212981A5006700374 @default.
- W4387212981 hasAuthorship W4387212981A5008666242 @default.
- W4387212981 hasAuthorship W4387212981A5032355515 @default.
- W4387212981 hasAuthorship W4387212981A5044373059 @default.
- W4387212981 hasAuthorship W4387212981A5045880424 @default.
- W4387212981 hasAuthorship W4387212981A5051326453 @default.
- W4387212981 hasAuthorship W4387212981A5069435150 @default.
- W4387212981 hasConcept C110872660 @default.