Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387219033> ?p ?o ?g. }
- W4387219033 endingPage "112303" @default.
- W4387219033 startingPage "112303" @default.
- W4387219033 abstract "Idiopathic pulmonary hypertension (IPAH) is a rare and severe disease that affects the pulmonary vasculature. As the diagnosis of IPAH requires invasive right heart catheterization surgery, early detection of this condition is notoriously challenging. Therefore, it is of utmost importance to investigate biomarkers present in peripheral blood that could aid physicians in the early identification and management of IPAH.We speculate that cellular senescence may be involved in the occurrence and development of IPAH through various pathways. In this study, we utilized integrated transcriptome analyses and machine learning-based approach to develop a diagnostic model for IPAH cell senescence. To select genetic features, we employed two machine learning algorithms: the Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF). Additionally, we validated our findings through both external data sets and qRT-PCR experiments.The resulting diagnostic nomogram was able to identify five important biomarkers that can aid in the diagnosis of IPAH, including TNFRSF1B, CCL16, GCLM, IL15, and SOD1. These genes are primarily associated with the immune system, as well as with cell senescence and apoptosis.Our study demonstrates the utility of machine learning algorithms in making accurate diagnoses of IPAH, providing clinicians with a more directed approach to the diagnosis and treatment of this disease." @default.
- W4387219033 created "2023-10-01" @default.
- W4387219033 creator A5007598369 @default.
- W4387219033 creator A5018789237 @default.
- W4387219033 creator A5027835055 @default.
- W4387219033 creator A5031425645 @default.
- W4387219033 creator A5044828582 @default.
- W4387219033 creator A5058153791 @default.
- W4387219033 creator A5065264306 @default.
- W4387219033 creator A5074829480 @default.
- W4387219033 creator A5083967437 @default.
- W4387219033 creator A5086664284 @default.
- W4387219033 date "2023-10-01" @default.
- W4387219033 modified "2023-10-05" @default.
- W4387219033 title "Identication and validation of cell senescence biomarkers in idiopathic pulmonary hypertension via integrated transcriptome analyses and machine learning" @default.
- W4387219033 cites W1966327575 @default.
- W4387219033 cites W2055530308 @default.
- W4387219033 cites W2075086965 @default.
- W4387219033 cites W2095247210 @default.
- W4387219033 cites W2139437349 @default.
- W4387219033 cites W2146512944 @default.
- W4387219033 cites W2301382960 @default.
- W4387219033 cites W2559588208 @default.
- W4387219033 cites W2587212668 @default.
- W4387219033 cites W2743897368 @default.
- W4387219033 cites W2802466531 @default.
- W4387219033 cites W2897054926 @default.
- W4387219033 cites W2898567584 @default.
- W4387219033 cites W2903972150 @default.
- W4387219033 cites W2911671206 @default.
- W4387219033 cites W2911840604 @default.
- W4387219033 cites W2936243442 @default.
- W4387219033 cites W2979787393 @default.
- W4387219033 cites W3037438961 @default.
- W4387219033 cites W3110886596 @default.
- W4387219033 cites W3214674142 @default.
- W4387219033 cites W4220997283 @default.
- W4387219033 cites W4221049604 @default.
- W4387219033 cites W4223642687 @default.
- W4387219033 cites W4292004337 @default.
- W4387219033 cites W4292528167 @default.
- W4387219033 cites W4295560705 @default.
- W4387219033 cites W4303022272 @default.
- W4387219033 cites W4310675674 @default.
- W4387219033 cites W4311511263 @default.
- W4387219033 cites W4313545250 @default.
- W4387219033 cites W4315701830 @default.
- W4387219033 cites W4318833095 @default.
- W4387219033 cites W4360985414 @default.
- W4387219033 cites W4364361097 @default.
- W4387219033 cites W4377565342 @default.
- W4387219033 cites W4378745787 @default.
- W4387219033 cites W4381546988 @default.
- W4387219033 doi "https://doi.org/10.1016/j.exger.2023.112303" @default.
- W4387219033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37776984" @default.
- W4387219033 hasPublicationYear "2023" @default.
- W4387219033 type Work @default.
- W4387219033 citedByCount "0" @default.
- W4387219033 crossrefType "journal-article" @default.
- W4387219033 hasAuthorship W4387219033A5007598369 @default.
- W4387219033 hasAuthorship W4387219033A5018789237 @default.
- W4387219033 hasAuthorship W4387219033A5027835055 @default.
- W4387219033 hasAuthorship W4387219033A5031425645 @default.
- W4387219033 hasAuthorship W4387219033A5044828582 @default.
- W4387219033 hasAuthorship W4387219033A5058153791 @default.
- W4387219033 hasAuthorship W4387219033A5065264306 @default.
- W4387219033 hasAuthorship W4387219033A5074829480 @default.
- W4387219033 hasAuthorship W4387219033A5083967437 @default.
- W4387219033 hasAuthorship W4387219033A5086664284 @default.
- W4387219033 hasBestOaLocation W43872190331 @default.
- W4387219033 hasConcept C104317684 @default.
- W4387219033 hasConcept C119857082 @default.
- W4387219033 hasConcept C126322002 @default.
- W4387219033 hasConcept C142724271 @default.
- W4387219033 hasConcept C150194340 @default.
- W4387219033 hasConcept C162317418 @default.
- W4387219033 hasConcept C2779134260 @default.
- W4387219033 hasConcept C2780930700 @default.
- W4387219033 hasConcept C2781197716 @default.
- W4387219033 hasConcept C34626388 @default.
- W4387219033 hasConcept C41008148 @default.
- W4387219033 hasConcept C522857546 @default.
- W4387219033 hasConcept C55493867 @default.
- W4387219033 hasConcept C60644358 @default.
- W4387219033 hasConcept C70721500 @default.
- W4387219033 hasConcept C71924100 @default.
- W4387219033 hasConcept C86803240 @default.
- W4387219033 hasConceptScore W4387219033C104317684 @default.
- W4387219033 hasConceptScore W4387219033C119857082 @default.
- W4387219033 hasConceptScore W4387219033C126322002 @default.
- W4387219033 hasConceptScore W4387219033C142724271 @default.
- W4387219033 hasConceptScore W4387219033C150194340 @default.
- W4387219033 hasConceptScore W4387219033C162317418 @default.
- W4387219033 hasConceptScore W4387219033C2779134260 @default.
- W4387219033 hasConceptScore W4387219033C2780930700 @default.
- W4387219033 hasConceptScore W4387219033C2781197716 @default.
- W4387219033 hasConceptScore W4387219033C34626388 @default.
- W4387219033 hasConceptScore W4387219033C41008148 @default.