Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387222759> ?p ?o ?g. }
- W4387222759 endingPage "19" @default.
- W4387222759 startingPage "1" @default.
- W4387222759 abstract "AbstractThis study aims to predict the number of accidents in the National Iranian Oil Products Distribution Company (NIOPDC) as a case study in 2022 according to the database between 2012 and 2021. Artificial Neural Network (ANN) is used for modeling using curve fitting (Multi-Layer Perceptron-MLP) and time series (Nonlinear AutoRegressive exogenous -NARX) networks. The network parameters are adjusted by optimal architecture values to create a successful model with coefficient determination (R2) and Mean Square Error (MSE) performance criteria. Also, mathematical methods of Root Mean Square Error (RMSE), Average Invalidity Percentages (AIP), Average Validity Percentages (AVP), and Mean Absolute Error (MAE) are checked out to evaluate the proposed model’s robustness. The results show acceptable R2 values of 0.98 and 0.99 for MLP and NARX networks, respectively, demonstrating that NARX has more prediction accuracy than the MLP network. By the best model (NARX) results, falls, CNG, and LPG facility accidents will be half. Nevertheless, the aviation center and loading rack accidents will rise 3 and 1.5 times, respectively. The findings will be helpful in systematic accident prevention for decision-making authorities which have been done in the Iranian petroleum industry for the first time.Keywords: Accident predictionartificial neural networkMLPNARXpetroleum industry Additional informationFundingThe article presents a part of the research results of the project ‘Accident’s modeling using artificial neural network’, No. 16/14000303, supported by NIOPDC." @default.
- W4387222759 created "2023-10-01" @default.
- W4387222759 creator A5032511721 @default.
- W4387222759 creator A5035120367 @default.
- W4387222759 creator A5069805489 @default.
- W4387222759 creator A5074496132 @default.
- W4387222759 creator A5078596324 @default.
- W4387222759 date "2023-09-30" @default.
- W4387222759 modified "2023-10-16" @default.
- W4387222759 title "Accident prediction modeling by artificial neural network in petroleum industry: a case study of National Iranian Oil Products Distribution Company" @default.
- W4387222759 cites W1963628202 @default.
- W4387222759 cites W1973995342 @default.
- W4387222759 cites W1986517446 @default.
- W4387222759 cites W1990476081 @default.
- W4387222759 cites W2007869649 @default.
- W4387222759 cites W2018066684 @default.
- W4387222759 cites W2048703002 @default.
- W4387222759 cites W2051216975 @default.
- W4387222759 cites W2091921701 @default.
- W4387222759 cites W2298932698 @default.
- W4387222759 cites W2414339376 @default.
- W4387222759 cites W2499815985 @default.
- W4387222759 cites W2547526835 @default.
- W4387222759 cites W2620277952 @default.
- W4387222759 cites W2791416295 @default.
- W4387222759 cites W2792919287 @default.
- W4387222759 cites W2888652924 @default.
- W4387222759 cites W2890586674 @default.
- W4387222759 cites W2908400012 @default.
- W4387222759 cites W2922367262 @default.
- W4387222759 cites W2948678706 @default.
- W4387222759 cites W2971647874 @default.
- W4387222759 cites W2973453577 @default.
- W4387222759 cites W2982689329 @default.
- W4387222759 cites W2990719868 @default.
- W4387222759 cites W3019409053 @default.
- W4387222759 cites W3020059551 @default.
- W4387222759 cites W3043890802 @default.
- W4387222759 cites W3083279864 @default.
- W4387222759 cites W3094253667 @default.
- W4387222759 cites W3102819732 @default.
- W4387222759 cites W3106860847 @default.
- W4387222759 cites W3109271316 @default.
- W4387222759 cites W3133743901 @default.
- W4387222759 cites W3138915170 @default.
- W4387222759 cites W3170637310 @default.
- W4387222759 cites W3188010984 @default.
- W4387222759 cites W3189717372 @default.
- W4387222759 cites W3209340886 @default.
- W4387222759 cites W3210611103 @default.
- W4387222759 cites W3213551175 @default.
- W4387222759 cites W3214840804 @default.
- W4387222759 cites W3216175898 @default.
- W4387222759 cites W4200193640 @default.
- W4387222759 cites W4200574254 @default.
- W4387222759 cites W4205708310 @default.
- W4387222759 cites W4220686063 @default.
- W4387222759 cites W4220957411 @default.
- W4387222759 cites W4220984314 @default.
- W4387222759 cites W4224213555 @default.
- W4387222759 cites W4224214581 @default.
- W4387222759 cites W4225375759 @default.
- W4387222759 cites W4280517703 @default.
- W4387222759 cites W4281566989 @default.
- W4387222759 cites W4296818372 @default.
- W4387222759 cites W4310060923 @default.
- W4387222759 cites W4311525011 @default.
- W4387222759 cites W4312337391 @default.
- W4387222759 doi "https://doi.org/10.1080/10916466.2023.2253853" @default.
- W4387222759 hasPublicationYear "2023" @default.
- W4387222759 type Work @default.
- W4387222759 citedByCount "0" @default.
- W4387222759 crossrefType "journal-article" @default.
- W4387222759 hasAuthorship W4387222759A5032511721 @default.
- W4387222759 hasAuthorship W4387222759A5035120367 @default.
- W4387222759 hasAuthorship W4387222759A5069805489 @default.
- W4387222759 hasAuthorship W4387222759A5074496132 @default.
- W4387222759 hasAuthorship W4387222759A5078596324 @default.
- W4387222759 hasConcept C105795698 @default.
- W4387222759 hasConcept C127413603 @default.
- W4387222759 hasConcept C139945424 @default.
- W4387222759 hasConcept C154945302 @default.
- W4387222759 hasConcept C159877910 @default.
- W4387222759 hasConcept C179717631 @default.
- W4387222759 hasConcept C33923547 @default.
- W4387222759 hasConcept C41008148 @default.
- W4387222759 hasConcept C42536954 @default.
- W4387222759 hasConcept C50644808 @default.
- W4387222759 hasConceptScore W4387222759C105795698 @default.
- W4387222759 hasConceptScore W4387222759C127413603 @default.
- W4387222759 hasConceptScore W4387222759C139945424 @default.
- W4387222759 hasConceptScore W4387222759C154945302 @default.
- W4387222759 hasConceptScore W4387222759C159877910 @default.
- W4387222759 hasConceptScore W4387222759C179717631 @default.
- W4387222759 hasConceptScore W4387222759C33923547 @default.
- W4387222759 hasConceptScore W4387222759C41008148 @default.
- W4387222759 hasConceptScore W4387222759C42536954 @default.
- W4387222759 hasConceptScore W4387222759C50644808 @default.