Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387225894> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387225894 endingPage "275" @default.
- W4387225894 startingPage "266" @default.
- W4387225894 abstract "As research interests in medical image analysis become increasingly fine-grained, the cost for extensive annotation also rises. One feasible way to reduce the cost is to annotate with coarse-grained superclass labels while using limited fine-grained annotations as a complement. In this way, fine-grained data learning is assisted by ample coarse annotations. Recent studies in classification tasks have adopted this method to achieve satisfactory results. However, there is a lack of research on efficient learning of fine-grained subclasses in semantic segmentation tasks. In this paper, we propose a novel approach that leverages the hierarchical structure of categories to design network architecture. Meanwhile, a task-driven data generation method is presented to make it easier for the network to recognize different subclass categories. Specifically, we introduce a Prior Concatenation module that enhances confidence in subclass segmentation by concatenating predicted logits from the superclass classifier, a Separate Normalization module that stretches the intra-class distance within the same superclass to facilitate subclass segmentation, and a HierarchicalMix model that generates high-quality pseudo labels for unlabeled samples by fusing only similar superclass regions from labeled and unlabeled images. Our experiments on the BraTS2021 and ACDC datasets demonstrate that our approach achieves comparable accuracy to a model trained with full subclass annotations, with limited subclass annotations and sufficient superclass annotations. Our approach offers a promising solution for efficient fine-grained subclass segmentation in medical images. Our code is publicly available here ." @default.
- W4387225894 created "2023-10-01" @default.
- W4387225894 creator A5008678513 @default.
- W4387225894 creator A5080613452 @default.
- W4387225894 creator A5087462974 @default.
- W4387225894 date "2023-01-01" @default.
- W4387225894 modified "2023-10-01" @default.
- W4387225894 title "Efficient Subclass Segmentation in Medical Images" @default.
- W4387225894 cites W1901129140 @default.
- W4387225894 cites W2751665805 @default.
- W4387225894 cites W2804047627 @default.
- W4387225894 cites W2979907638 @default.
- W4387225894 cites W2981952612 @default.
- W4387225894 cites W3091002423 @default.
- W4387225894 cites W3097337894 @default.
- W4387225894 cites W3112346810 @default.
- W4387225894 cites W3120191671 @default.
- W4387225894 cites W3171581326 @default.
- W4387225894 cites W3178565749 @default.
- W4387225894 cites W3183316215 @default.
- W4387225894 cites W3213302606 @default.
- W4387225894 cites W4211030596 @default.
- W4387225894 cites W4213450621 @default.
- W4387225894 cites W4214961286 @default.
- W4387225894 cites W4225823779 @default.
- W4387225894 cites W4282935002 @default.
- W4387225894 doi "https://doi.org/10.1007/978-3-031-43895-0_25" @default.
- W4387225894 hasPublicationYear "2023" @default.
- W4387225894 type Work @default.
- W4387225894 citedByCount "0" @default.
- W4387225894 crossrefType "book-chapter" @default.
- W4387225894 hasAuthorship W4387225894A5008678513 @default.
- W4387225894 hasAuthorship W4387225894A5080613452 @default.
- W4387225894 hasAuthorship W4387225894A5087462974 @default.
- W4387225894 hasConcept C136886441 @default.
- W4387225894 hasConcept C144024400 @default.
- W4387225894 hasConcept C153180895 @default.
- W4387225894 hasConcept C154945302 @default.
- W4387225894 hasConcept C159654299 @default.
- W4387225894 hasConcept C19165224 @default.
- W4387225894 hasConcept C203014093 @default.
- W4387225894 hasConcept C2776194381 @default.
- W4387225894 hasConcept C2776321320 @default.
- W4387225894 hasConcept C41008148 @default.
- W4387225894 hasConcept C86803240 @default.
- W4387225894 hasConcept C89600930 @default.
- W4387225894 hasConcept C95623464 @default.
- W4387225894 hasConceptScore W4387225894C136886441 @default.
- W4387225894 hasConceptScore W4387225894C144024400 @default.
- W4387225894 hasConceptScore W4387225894C153180895 @default.
- W4387225894 hasConceptScore W4387225894C154945302 @default.
- W4387225894 hasConceptScore W4387225894C159654299 @default.
- W4387225894 hasConceptScore W4387225894C19165224 @default.
- W4387225894 hasConceptScore W4387225894C203014093 @default.
- W4387225894 hasConceptScore W4387225894C2776194381 @default.
- W4387225894 hasConceptScore W4387225894C2776321320 @default.
- W4387225894 hasConceptScore W4387225894C41008148 @default.
- W4387225894 hasConceptScore W4387225894C86803240 @default.
- W4387225894 hasConceptScore W4387225894C89600930 @default.
- W4387225894 hasConceptScore W4387225894C95623464 @default.
- W4387225894 hasLocation W43872258941 @default.
- W4387225894 hasOpenAccess W4387225894 @default.
- W4387225894 hasPrimaryLocation W43872258941 @default.
- W4387225894 hasRelatedWork W1892467659 @default.
- W4387225894 hasRelatedWork W1991269640 @default.
- W4387225894 hasRelatedWork W2016839265 @default.
- W4387225894 hasRelatedWork W2167582322 @default.
- W4387225894 hasRelatedWork W2563096758 @default.
- W4387225894 hasRelatedWork W2742991909 @default.
- W4387225894 hasRelatedWork W2972035100 @default.
- W4387225894 hasRelatedWork W4386053843 @default.
- W4387225894 hasRelatedWork W2508457823 @default.
- W4387225894 hasRelatedWork W3158004940 @default.
- W4387225894 isParatext "false" @default.
- W4387225894 isRetracted "false" @default.
- W4387225894 workType "book-chapter" @default.