Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387230459> ?p ?o ?g. }
- W4387230459 endingPage "1516" @default.
- W4387230459 startingPage "1516" @default.
- W4387230459 abstract "The restored interest now receives renewable energy due to the global decline in greenhouse gas emanations and fossil fuel combustion. The fasted growing energy source, wind energy generation, is recognized as a clean energy source that has grown fast and is used extensively in wind power-producing facilities. This study’s short-term wind speed estimations are made using a multivariate model based on an artificial neural network (ANN) that combines several local measurements, including wind speed, wind direction, LV active power, and theoretical power curve. The dataset was received from Turkey’s SCADA system at 10-min intervals, and the actual data validated the expected performance. The research took wind speed into account as an input parameter and created a multivariate model. To perform prediction outcomes on time series data, an algorithm such as an artificial neural network (ANN) is utilized. The experiment verdicts reveal that the ANN algorithm produces reliable predicting results when metrics like 0.693 for MSE, 0.833 for RMSE and 0.96 for R-squared or Co-efficient of determination are considered." @default.
- W4387230459 created "2023-10-02" @default.
- W4387230459 creator A5008347106 @default.
- W4387230459 creator A5034211239 @default.
- W4387230459 creator A5036589399 @default.
- W4387230459 creator A5042181004 @default.
- W4387230459 creator A5061187994 @default.
- W4387230459 creator A5066390445 @default.
- W4387230459 creator A5068497484 @default.
- W4387230459 creator A5091859381 @default.
- W4387230459 date "2023-09-30" @default.
- W4387230459 modified "2023-10-12" @default.
- W4387230459 title "A New ANN Technique for Short-Term Wind Speed Prediction Based on SCADA System Data in Turkey" @default.
- W4387230459 cites W1607712735 @default.
- W4387230459 cites W1662482382 @default.
- W4387230459 cites W1981151789 @default.
- W4387230459 cites W2004075310 @default.
- W4387230459 cites W2009030445 @default.
- W4387230459 cites W2024377782 @default.
- W4387230459 cites W2039240409 @default.
- W4387230459 cites W2081526790 @default.
- W4387230459 cites W2102303403 @default.
- W4387230459 cites W2188317771 @default.
- W4387230459 cites W2581822685 @default.
- W4387230459 cites W2618615629 @default.
- W4387230459 cites W2625964993 @default.
- W4387230459 cites W2741825611 @default.
- W4387230459 cites W2883867434 @default.
- W4387230459 cites W2960552798 @default.
- W4387230459 cites W3014018326 @default.
- W4387230459 cites W3033673050 @default.
- W4387230459 cites W3091937935 @default.
- W4387230459 cites W3094773976 @default.
- W4387230459 cites W3108680670 @default.
- W4387230459 cites W3120220685 @default.
- W4387230459 cites W3137507614 @default.
- W4387230459 cites W3147012193 @default.
- W4387230459 cites W3150017935 @default.
- W4387230459 cites W3182706339 @default.
- W4387230459 cites W3203760898 @default.
- W4387230459 cites W3204137849 @default.
- W4387230459 cites W3211512627 @default.
- W4387230459 cites W4206415146 @default.
- W4387230459 cites W4225693907 @default.
- W4387230459 cites W4238179892 @default.
- W4387230459 cites W4312160066 @default.
- W4387230459 cites W4312221869 @default.
- W4387230459 cites W4313049996 @default.
- W4387230459 cites W4315629232 @default.
- W4387230459 cites W4322627364 @default.
- W4387230459 cites W4327545557 @default.
- W4387230459 cites W4376455273 @default.
- W4387230459 cites W4377101066 @default.
- W4387230459 cites W4378086283 @default.
- W4387230459 cites W4384823618 @default.
- W4387230459 cites W4385438657 @default.
- W4387230459 cites W4385811437 @default.
- W4387230459 doi "https://doi.org/10.3390/atmos14101516" @default.
- W4387230459 hasPublicationYear "2023" @default.
- W4387230459 type Work @default.
- W4387230459 citedByCount "0" @default.
- W4387230459 crossrefType "journal-article" @default.
- W4387230459 hasAuthorship W4387230459A5008347106 @default.
- W4387230459 hasAuthorship W4387230459A5034211239 @default.
- W4387230459 hasAuthorship W4387230459A5036589399 @default.
- W4387230459 hasAuthorship W4387230459A5042181004 @default.
- W4387230459 hasAuthorship W4387230459A5061187994 @default.
- W4387230459 hasAuthorship W4387230459A5066390445 @default.
- W4387230459 hasAuthorship W4387230459A5068497484 @default.
- W4387230459 hasAuthorship W4387230459A5091859381 @default.
- W4387230459 hasBestOaLocation W43872304591 @default.
- W4387230459 hasConcept C105795698 @default.
- W4387230459 hasConcept C111368507 @default.
- W4387230459 hasConcept C113863187 @default.
- W4387230459 hasConcept C119599485 @default.
- W4387230459 hasConcept C121332964 @default.
- W4387230459 hasConcept C127313418 @default.
- W4387230459 hasConcept C127413603 @default.
- W4387230459 hasConcept C139945424 @default.
- W4387230459 hasConcept C153294291 @default.
- W4387230459 hasConcept C154945302 @default.
- W4387230459 hasConcept C161067210 @default.
- W4387230459 hasConcept C163258240 @default.
- W4387230459 hasConcept C188573790 @default.
- W4387230459 hasConcept C33923547 @default.
- W4387230459 hasConcept C39432304 @default.
- W4387230459 hasConcept C41008148 @default.
- W4387230459 hasConcept C47737302 @default.
- W4387230459 hasConcept C50644808 @default.
- W4387230459 hasConcept C61797465 @default.
- W4387230459 hasConcept C62520636 @default.
- W4387230459 hasConcept C78600449 @default.
- W4387230459 hasConcept C89227174 @default.
- W4387230459 hasConceptScore W4387230459C105795698 @default.
- W4387230459 hasConceptScore W4387230459C111368507 @default.
- W4387230459 hasConceptScore W4387230459C113863187 @default.
- W4387230459 hasConceptScore W4387230459C119599485 @default.
- W4387230459 hasConceptScore W4387230459C121332964 @default.