Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387231465> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4387231465 abstract "Precision feeding is a strategy for supplying an amount and composition of feed as close that are as possible to each animal's nutrient requirements, with the aim of reducing feed costs and environmental losses. Usually, the nutrient requirements of gestating sows are provided by a nutrition model that requires input data such as sow and herd characteristics, but also an estimation of future farrowing performances. New sensors and automatons, such as automatic feeders and drinkers, have been developed on pig farms over the last decade, and have produced large amounts of data. This study evaluated machine-learning methods for predicting the daily nutrient requirements of gestating sows, based only on sensor data, according to various configurations of digital farms. The data of 73 gestating sows was recorded using sensors such as electronic feeders and drinker stations, connected weight scales, accelerometers, and cameras. Nine machine-learning algorithms were trained on various dataset scenarios according to different digital farm configurations (one or two sensors), in order to predict the daily metabolizable energy and standardized ileal digestible lysine requirements for each sow. The prediction results were compared to those predicted by the InraPorc model, a mechanistic model for the precision feeding of gestating sows. The scenario predictions were also evaluated with or without the housing conditions and sow characteristics at artificial insemination usually integrated into the InraPorc model. Adding housing and sow characteristics to sensor data improved the mean average percentage error by 5.58% for lysine and by 2.22% for energy. The higher correlation coefficient values for lysine (0.99) and for energy (0.95) were obtained for scenarios involving an automatic feeder system (daily duration and number of visits with or without consumption) only. The scenarios including an automatic feeder combined with another sensor gave good performance results. For the scenarios using sow and housing characteristics and automatic feeder only, the root mean square error was lower with Gradient Tree Boosting (0.91 MJ/d for energy and 0.08 g/d for lysine) compared with those obtained using linear regression (2.75 MJ/d and 1.07 g/d). The results of this study show that the daily nutrient requirements of gestating sows can be predicted accurately using data provided by sensors and machine-learning methods. It paves the way to simpler solutions for precision feeding." @default.
- W4387231465 created "2023-10-02" @default.
- W4387231465 creator A5023025601 @default.
- W4387231465 creator A5037074427 @default.
- W4387231465 creator A5043585936 @default.
- W4387231465 creator A5059733940 @default.
- W4387231465 creator A5068273161 @default.
- W4387231465 date "2023-10-01" @default.
- W4387231465 modified "2023-10-03" @default.
- W4387231465 title "Prediction of the daily nutrient requirements of gestating sows based on sensor data and machine-learning algorithms" @default.
- W4387231465 doi "https://doi.org/10.1093/jas/skad337" @default.
- W4387231465 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37778017" @default.
- W4387231465 hasPublicationYear "2023" @default.
- W4387231465 type Work @default.
- W4387231465 citedByCount "0" @default.
- W4387231465 crossrefType "journal-article" @default.
- W4387231465 hasAuthorship W4387231465A5023025601 @default.
- W4387231465 hasAuthorship W4387231465A5037074427 @default.
- W4387231465 hasAuthorship W4387231465A5043585936 @default.
- W4387231465 hasAuthorship W4387231465A5059733940 @default.
- W4387231465 hasAuthorship W4387231465A5068273161 @default.
- W4387231465 hasBestOaLocation W43872314651 @default.
- W4387231465 hasConcept C111919701 @default.
- W4387231465 hasConcept C11413529 @default.
- W4387231465 hasConcept C119857082 @default.
- W4387231465 hasConcept C140793950 @default.
- W4387231465 hasConcept C142796444 @default.
- W4387231465 hasConcept C18903297 @default.
- W4387231465 hasConcept C194775826 @default.
- W4387231465 hasConcept C2778610407 @default.
- W4387231465 hasConcept C2779234561 @default.
- W4387231465 hasConcept C41008148 @default.
- W4387231465 hasConcept C54355233 @default.
- W4387231465 hasConcept C86803240 @default.
- W4387231465 hasConcept C89805583 @default.
- W4387231465 hasConceptScore W4387231465C111919701 @default.
- W4387231465 hasConceptScore W4387231465C11413529 @default.
- W4387231465 hasConceptScore W4387231465C119857082 @default.
- W4387231465 hasConceptScore W4387231465C140793950 @default.
- W4387231465 hasConceptScore W4387231465C142796444 @default.
- W4387231465 hasConceptScore W4387231465C18903297 @default.
- W4387231465 hasConceptScore W4387231465C194775826 @default.
- W4387231465 hasConceptScore W4387231465C2778610407 @default.
- W4387231465 hasConceptScore W4387231465C2779234561 @default.
- W4387231465 hasConceptScore W4387231465C41008148 @default.
- W4387231465 hasConceptScore W4387231465C54355233 @default.
- W4387231465 hasConceptScore W4387231465C86803240 @default.
- W4387231465 hasConceptScore W4387231465C89805583 @default.
- W4387231465 hasLocation W43872314651 @default.
- W4387231465 hasLocation W43872314652 @default.
- W4387231465 hasOpenAccess W4387231465 @default.
- W4387231465 hasPrimaryLocation W43872314651 @default.
- W4387231465 hasRelatedWork W1996516029 @default.
- W4387231465 hasRelatedWork W2028685408 @default.
- W4387231465 hasRelatedWork W2029661503 @default.
- W4387231465 hasRelatedWork W2122885387 @default.
- W4387231465 hasRelatedWork W2170653308 @default.
- W4387231465 hasRelatedWork W2247158320 @default.
- W4387231465 hasRelatedWork W2296757047 @default.
- W4387231465 hasRelatedWork W2419328042 @default.
- W4387231465 hasRelatedWork W3006134045 @default.
- W4387231465 hasRelatedWork W3190507446 @default.
- W4387231465 isParatext "false" @default.
- W4387231465 isRetracted "false" @default.
- W4387231465 workType "article" @default.