Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387232012> ?p ?o ?g. }
- W4387232012 abstract "Abstract Analyses of spatial and temporal patterns of land use and land cover through multi-resolution remote sensing data provide valuable insights into landscape dynamics. Land use changes leading to land degradation and deforestation have been a prime mover for changes in the climate. This necessitates accurately assessing land use dynamics using a machine-learning algorithm’s temporal remote sensing data. The current study investigates land use using the temporal Landsat data from 1973 to 2021 in Chikamagaluru district, Karnataka. The land cover analysis showed 2.77% decrease in vegetation cover. The performance of three supervised learning techniques, namely Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood classifier (MLC) were assessed, and results reveal that RF has performed better with an overall accuracy of 90.22% and a kappa value of 0.85. Land use classification has been performed with supervised machine learning classifier Random Forest (RF), which showed a decrease in the forest cover (48.91%) with an increase of agriculture (6.13%), horticulture (43.14%) and built-up cover (2.10%). Forests have been shrinking due to anthropogenic forces, especially forest encroachment for agriculture and industrial development, resulting in forest fragmentation and habitat loss. The fragmentation analysis provided the structural change in the forest cover, where interior forest cover was lost by 27.67% from 1973 to 2021, which highlights intense anthropogenic pressure even in the core Western Ghats regions with dense forests. Temporal details of the extent and condition of land use form an information base for decision-makers." @default.
- W4387232012 created "2023-10-02" @default.
- W4387232012 creator A5007618533 @default.
- W4387232012 creator A5039846875 @default.
- W4387232012 creator A5043666175 @default.
- W4387232012 date "2023-10-01" @default.
- W4387232012 modified "2023-10-07" @default.
- W4387232012 title "Relative performance evaluation of machine learning algorithms for land use classification using multispectral moderate resolution data" @default.
- W4387232012 cites W1980531790 @default.
- W4387232012 cites W1982657128 @default.
- W4387232012 cites W1988249187 @default.
- W4387232012 cites W1988590943 @default.
- W4387232012 cites W1992290591 @default.
- W4387232012 cites W1994118044 @default.
- W4387232012 cites W1995204722 @default.
- W4387232012 cites W2004071268 @default.
- W4387232012 cites W2019763913 @default.
- W4387232012 cites W2048039283 @default.
- W4387232012 cites W2050166462 @default.
- W4387232012 cites W2051869113 @default.
- W4387232012 cites W2056437701 @default.
- W4387232012 cites W2080279313 @default.
- W4387232012 cites W2086975319 @default.
- W4387232012 cites W2126161611 @default.
- W4387232012 cites W2132424470 @default.
- W4387232012 cites W2155632266 @default.
- W4387232012 cites W2210676602 @default.
- W4387232012 cites W2341537960 @default.
- W4387232012 cites W2399700809 @default.
- W4387232012 cites W2401113580 @default.
- W4387232012 cites W2521764372 @default.
- W4387232012 cites W2590337549 @default.
- W4387232012 cites W2590379360 @default.
- W4387232012 cites W2605590466 @default.
- W4387232012 cites W2776146695 @default.
- W4387232012 cites W2796118876 @default.
- W4387232012 cites W2807718286 @default.
- W4387232012 cites W2884555847 @default.
- W4387232012 cites W2899338418 @default.
- W4387232012 cites W2904606389 @default.
- W4387232012 cites W2909347110 @default.
- W4387232012 cites W2911964244 @default.
- W4387232012 cites W2912934387 @default.
- W4387232012 cites W2944143215 @default.
- W4387232012 cites W3005089673 @default.
- W4387232012 cites W3014372673 @default.
- W4387232012 cites W3033591797 @default.
- W4387232012 cites W3044235488 @default.
- W4387232012 cites W3082106469 @default.
- W4387232012 cites W3085831966 @default.
- W4387232012 cites W3103543459 @default.
- W4387232012 cites W3111380248 @default.
- W4387232012 cites W3134910218 @default.
- W4387232012 cites W3163038524 @default.
- W4387232012 cites W3167864888 @default.
- W4387232012 cites W4210361695 @default.
- W4387232012 cites W4210754462 @default.
- W4387232012 cites W4212905168 @default.
- W4387232012 cites W4221087908 @default.
- W4387232012 cites W4223486066 @default.
- W4387232012 cites W4224271852 @default.
- W4387232012 cites W4281644017 @default.
- W4387232012 cites W4281716397 @default.
- W4387232012 cites W4281933899 @default.
- W4387232012 cites W4282047029 @default.
- W4387232012 cites W4283330845 @default.
- W4387232012 cites W4297957988 @default.
- W4387232012 doi "https://doi.org/10.1007/s42452-023-05496-4" @default.
- W4387232012 hasPublicationYear "2023" @default.
- W4387232012 type Work @default.
- W4387232012 citedByCount "0" @default.
- W4387232012 crossrefType "journal-article" @default.
- W4387232012 hasAuthorship W4387232012A5007618533 @default.
- W4387232012 hasAuthorship W4387232012A5039846875 @default.
- W4387232012 hasAuthorship W4387232012A5043666175 @default.
- W4387232012 hasBestOaLocation W43872320121 @default.
- W4387232012 hasConcept C119857082 @default.
- W4387232012 hasConcept C12267149 @default.
- W4387232012 hasConcept C169258074 @default.
- W4387232012 hasConcept C18903297 @default.
- W4387232012 hasConcept C205649164 @default.
- W4387232012 hasConcept C2780648208 @default.
- W4387232012 hasConcept C39432304 @default.
- W4387232012 hasConcept C41008148 @default.
- W4387232012 hasConcept C4792198 @default.
- W4387232012 hasConcept C62649853 @default.
- W4387232012 hasConcept C86803240 @default.
- W4387232012 hasConceptScore W4387232012C119857082 @default.
- W4387232012 hasConceptScore W4387232012C12267149 @default.
- W4387232012 hasConceptScore W4387232012C169258074 @default.
- W4387232012 hasConceptScore W4387232012C18903297 @default.
- W4387232012 hasConceptScore W4387232012C205649164 @default.
- W4387232012 hasConceptScore W4387232012C2780648208 @default.
- W4387232012 hasConceptScore W4387232012C39432304 @default.
- W4387232012 hasConceptScore W4387232012C41008148 @default.
- W4387232012 hasConceptScore W4387232012C4792198 @default.
- W4387232012 hasConceptScore W4387232012C62649853 @default.
- W4387232012 hasConceptScore W4387232012C86803240 @default.
- W4387232012 hasIssue "10" @default.
- W4387232012 hasLocation W43872320121 @default.