Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387232887> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4387232887 endingPage "709" @default.
- W4387232887 startingPage "699" @default.
- W4387232887 abstract "In this study, instance selection was made using the fuzzy rough set based instance selection method, which is the main indicator of heart disease risk, with the finding of a certain narrowed main cardiovascular number and some other medical findings. Then, with the help of machine learning algorithms, a heart disease risk estimation model was developed over two different size and structure data sets. The heart disease dataset, formed by combining 5 different heart disease datasets, was taken from the IEEE dataport website [1]. In order to eliminate noisy instances, the 12-variable data of 1190 patients was reduced to 836 instances by fuzzy rough set based instance selection method. Qualitative variables used in the analysis are age, sex, chest pain type, resting bps, cholesterol, fasting blood sugar, resting ecg results, maximum heart rate, exercise induced angina, oldpeak, ST slope. Then, the data set was divided into two as 70% training and 30% test data sets, two-class averaged perceptron, two-class Bayes point machine, two-class logistic regression, two-class support vector machine, two-class neural network, two-class locally deep support vector machine and two-class boosted decision tree models were trained. As a result of the validity analysis carried out, the use of fuzzy rough set based instance selection method improved the prediction performance of all models. While the Two-Class Boosted Decision Tree method gave a higher accuracy than other methods, it gave an accuracy result between 89% and 93% in other methods." @default.
- W4387232887 created "2023-10-02" @default.
- W4387232887 creator A5030279971 @default.
- W4387232887 creator A5073357616 @default.
- W4387232887 creator A5074219024 @default.
- W4387232887 creator A5092979607 @default.
- W4387232887 date "2023-10-02" @default.
- W4387232887 modified "2023-10-18" @default.
- W4387232887 title "Prediction of Heart Disease Using Fuzzy Rough Set Based Instance Selection and Machine Learning Algorithms" @default.
- W4387232887 cites W2115412314 @default.
- W4387232887 cites W2160759173 @default.
- W4387232887 cites W2205158676 @default.
- W4387232887 cites W2521029800 @default.
- W4387232887 cites W2604437134 @default.
- W4387232887 cites W3018518800 @default.
- W4387232887 cites W3134840015 @default.
- W4387232887 cites W3175509498 @default.
- W4387232887 cites W3198994498 @default.
- W4387232887 cites W3205154884 @default.
- W4387232887 cites W3215669537 @default.
- W4387232887 cites W3215867059 @default.
- W4387232887 cites W4200129993 @default.
- W4387232887 cites W4205230982 @default.
- W4387232887 cites W4220787723 @default.
- W4387232887 cites W4226396335 @default.
- W4387232887 cites W4241072669 @default.
- W4387232887 cites W4252426195 @default.
- W4387232887 cites W4283170974 @default.
- W4387232887 cites W4285681466 @default.
- W4387232887 cites W4295015107 @default.
- W4387232887 cites W4296182863 @default.
- W4387232887 cites W4303415456 @default.
- W4387232887 cites W4306173977 @default.
- W4387232887 cites W4306650020 @default.
- W4387232887 cites W4306762807 @default.
- W4387232887 cites W4308194652 @default.
- W4387232887 cites W4308616331 @default.
- W4387232887 cites W4308799569 @default.
- W4387232887 cites W4308805270 @default.
- W4387232887 cites W4308925509 @default.
- W4387232887 cites W4308928079 @default.
- W4387232887 cites W4313340637 @default.
- W4387232887 cites W4318570548 @default.
- W4387232887 cites W4327924019 @default.
- W4387232887 doi "https://doi.org/10.1007/978-981-99-6062-0_66" @default.
- W4387232887 hasPublicationYear "2023" @default.
- W4387232887 type Work @default.
- W4387232887 citedByCount "0" @default.
- W4387232887 crossrefType "book-chapter" @default.
- W4387232887 hasAuthorship W4387232887A5030279971 @default.
- W4387232887 hasAuthorship W4387232887A5073357616 @default.
- W4387232887 hasAuthorship W4387232887A5074219024 @default.
- W4387232887 hasAuthorship W4387232887A5092979607 @default.
- W4387232887 hasConcept C111012933 @default.
- W4387232887 hasConcept C11413529 @default.
- W4387232887 hasConcept C119857082 @default.
- W4387232887 hasConcept C12267149 @default.
- W4387232887 hasConcept C124101348 @default.
- W4387232887 hasConcept C148483581 @default.
- W4387232887 hasConcept C151956035 @default.
- W4387232887 hasConcept C153180895 @default.
- W4387232887 hasConcept C154945302 @default.
- W4387232887 hasConcept C41008148 @default.
- W4387232887 hasConcept C50644808 @default.
- W4387232887 hasConcept C52001869 @default.
- W4387232887 hasConcept C84525736 @default.
- W4387232887 hasConceptScore W4387232887C111012933 @default.
- W4387232887 hasConceptScore W4387232887C11413529 @default.
- W4387232887 hasConceptScore W4387232887C119857082 @default.
- W4387232887 hasConceptScore W4387232887C12267149 @default.
- W4387232887 hasConceptScore W4387232887C124101348 @default.
- W4387232887 hasConceptScore W4387232887C148483581 @default.
- W4387232887 hasConceptScore W4387232887C151956035 @default.
- W4387232887 hasConceptScore W4387232887C153180895 @default.
- W4387232887 hasConceptScore W4387232887C154945302 @default.
- W4387232887 hasConceptScore W4387232887C41008148 @default.
- W4387232887 hasConceptScore W4387232887C50644808 @default.
- W4387232887 hasConceptScore W4387232887C52001869 @default.
- W4387232887 hasConceptScore W4387232887C84525736 @default.
- W4387232887 hasLocation W43872328871 @default.
- W4387232887 hasOpenAccess W4387232887 @default.
- W4387232887 hasPrimaryLocation W43872328871 @default.
- W4387232887 hasRelatedWork W1470425429 @default.
- W4387232887 hasRelatedWork W2985924212 @default.
- W4387232887 hasRelatedWork W3186233728 @default.
- W4387232887 hasRelatedWork W3210877509 @default.
- W4387232887 hasRelatedWork W4281846282 @default.
- W4387232887 hasRelatedWork W4316658362 @default.
- W4387232887 hasRelatedWork W4321636153 @default.
- W4387232887 hasRelatedWork W4377964522 @default.
- W4387232887 hasRelatedWork W4383535405 @default.
- W4387232887 hasRelatedWork W2345184372 @default.
- W4387232887 isParatext "false" @default.
- W4387232887 isRetracted "false" @default.
- W4387232887 workType "book-chapter" @default.