Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387234083> ?p ?o ?g. }
- W4387234083 endingPage "125261" @default.
- W4387234083 startingPage "125261" @default.
- W4387234083 abstract "Gigascale carbon capture and sequestration (CCS) is increasingly seen as essential to meeting the targets of the Paris Agreement. As an alternative to conventional CCS approaches, carbon dioxide (CO2) hydrates have received attention as materials which can enable new approaches to carbon capture as well as carbon sequestration. CO2 hydrates (ice-like materials of CO2 and water) form at medium pressures (<400 psi) and temperatures of >0 °C from a water-CO2 mixture. Bubble column reactors (BCR) have been studied as a preferred way of forming CO2 hydrates. This study uses an inhouse, recently-developed modeling framework to predict performance of a BCR for CO2 hydrate formation from flue gas (CO2/N2), and pure CO2 streams. We highlight and analyze specific aspects of hydrate formation that are important for CO2 sequestration, and for CO2 separation/capture. In particular, two performance parameters are analyzed: i) gas consumption rate for hydrate formation (normalized with reactor volume), and ii) fraction of CO2 that converts to CO2 hydrates in a single pass (conversion factor). The first metric quantifies the overall productivity of a BCR by obtaining the net CO2 that can be sequestered or separated from the flue gas stream. The second metric relates to the efficiency of the system by quantifying the need for recirculation and the quality of the exit stream after a single pass. Extensive parametric analysis is conducted to study the influence of pressure, temperature, CO2 mole fraction at inlet, gas flow rate and reactor geometry on hydrate formation. Across the range of simulations conducted in this study, the highest gas consumption rate per unit reactor volume was 28.9 ton/yr/m3 and the highest conversion factor was 67.8 %. Both parameters increase with increasing pressure, decreasing temperature and increasing inlet mole fraction of CO2. Increasing gas flow rate increases the gas consumption rate (i.e., hydrate formation rate) but reduces the conversion factor. This suggests that the overall productivity of BCRs increases with gas flow rate at the expense of its efficiency. Reduced efficiency increases recirculation-related costs and high flow rate increases compression and cooling costs. For flue gas, increasing the reactor volume by increasing the height or diameter increases conversion factor but significantly reduces the gas consumption rate per unit reactor volume. For pure CO2, increasing the reactor height increases the conversion factor without changing the volumetric gas consumption rate. Decreasing the diameter increases volumetric gas consumption rate without changing the conversion factor. These findings suggest that compact reactors are more suitable for CO2 hydrate slurry production (on a volumetric basis), while larger reactors are suitable for CO2 separation/capture applications. Overall, this study provides a basis for the design and operation of BCRs for CO2 hydrates-based CCS applications." @default.
- W4387234083 created "2023-10-02" @default.
- W4387234083 creator A5075331071 @default.
- W4387234083 creator A5075667036 @default.
- W4387234083 creator A5085325272 @default.
- W4387234083 date "2024-02-01" @default.
- W4387234083 modified "2023-10-16" @default.
- W4387234083 title "Analysis of CO2 hydrate formation from flue gas mixtures in a bubble column reactor" @default.
- W4387234083 cites W1967502640 @default.
- W4387234083 cites W1968250737 @default.
- W4387234083 cites W1980391301 @default.
- W4387234083 cites W1991000491 @default.
- W4387234083 cites W1994040821 @default.
- W4387234083 cites W1995412760 @default.
- W4387234083 cites W1998730244 @default.
- W4387234083 cites W2015293317 @default.
- W4387234083 cites W2020648240 @default.
- W4387234083 cites W2025665172 @default.
- W4387234083 cites W2050624584 @default.
- W4387234083 cites W2061409216 @default.
- W4387234083 cites W2075302005 @default.
- W4387234083 cites W2079257264 @default.
- W4387234083 cites W2089844537 @default.
- W4387234083 cites W2101067476 @default.
- W4387234083 cites W2105730493 @default.
- W4387234083 cites W2152107427 @default.
- W4387234083 cites W2167382751 @default.
- W4387234083 cites W2203978601 @default.
- W4387234083 cites W2309706855 @default.
- W4387234083 cites W2312352959 @default.
- W4387234083 cites W2465065960 @default.
- W4387234083 cites W2518990619 @default.
- W4387234083 cites W2745369594 @default.
- W4387234083 cites W2792602050 @default.
- W4387234083 cites W2906812533 @default.
- W4387234083 cites W2921552017 @default.
- W4387234083 cites W2923654230 @default.
- W4387234083 cites W2924676523 @default.
- W4387234083 cites W2934006273 @default.
- W4387234083 cites W2981450443 @default.
- W4387234083 cites W3011947152 @default.
- W4387234083 cites W3035313754 @default.
- W4387234083 cites W3036317002 @default.
- W4387234083 cites W3047774990 @default.
- W4387234083 cites W3112448379 @default.
- W4387234083 cites W3122926091 @default.
- W4387234083 cites W3157283899 @default.
- W4387234083 cites W3157637145 @default.
- W4387234083 cites W4229909454 @default.
- W4387234083 cites W4253004910 @default.
- W4387234083 cites W4283800046 @default.
- W4387234083 cites W4296618447 @default.
- W4387234083 cites W4308507515 @default.
- W4387234083 cites W4328054811 @default.
- W4387234083 doi "https://doi.org/10.1016/j.seppur.2023.125261" @default.
- W4387234083 hasPublicationYear "2024" @default.
- W4387234083 type Work @default.
- W4387234083 citedByCount "0" @default.
- W4387234083 crossrefType "journal-article" @default.
- W4387234083 hasAuthorship W4387234083A5075331071 @default.
- W4387234083 hasAuthorship W4387234083A5075667036 @default.
- W4387234083 hasAuthorship W4387234083A5085325272 @default.
- W4387234083 hasConcept C100402318 @default.
- W4387234083 hasConcept C104779481 @default.
- W4387234083 hasConcept C121332964 @default.
- W4387234083 hasConcept C127413603 @default.
- W4387234083 hasConcept C132651083 @default.
- W4387234083 hasConcept C140205800 @default.
- W4387234083 hasConcept C149629883 @default.
- W4387234083 hasConcept C157915830 @default.
- W4387234083 hasConcept C159985019 @default.
- W4387234083 hasConcept C167206829 @default.
- W4387234083 hasConcept C178790620 @default.
- W4387234083 hasConcept C185592680 @default.
- W4387234083 hasConcept C18903297 @default.
- W4387234083 hasConcept C192562407 @default.
- W4387234083 hasConcept C21880701 @default.
- W4387234083 hasConcept C22884784 @default.
- W4387234083 hasConcept C2778379663 @default.
- W4387234083 hasConcept C2781060337 @default.
- W4387234083 hasConcept C43617362 @default.
- W4387234083 hasConcept C530467964 @default.
- W4387234083 hasConcept C57879066 @default.
- W4387234083 hasConcept C78762247 @default.
- W4387234083 hasConcept C86803240 @default.
- W4387234083 hasConceptScore W4387234083C100402318 @default.
- W4387234083 hasConceptScore W4387234083C104779481 @default.
- W4387234083 hasConceptScore W4387234083C121332964 @default.
- W4387234083 hasConceptScore W4387234083C127413603 @default.
- W4387234083 hasConceptScore W4387234083C132651083 @default.
- W4387234083 hasConceptScore W4387234083C140205800 @default.
- W4387234083 hasConceptScore W4387234083C149629883 @default.
- W4387234083 hasConceptScore W4387234083C157915830 @default.
- W4387234083 hasConceptScore W4387234083C159985019 @default.
- W4387234083 hasConceptScore W4387234083C167206829 @default.
- W4387234083 hasConceptScore W4387234083C178790620 @default.
- W4387234083 hasConceptScore W4387234083C185592680 @default.
- W4387234083 hasConceptScore W4387234083C18903297 @default.