Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387234807> ?p ?o ?g. }
- W4387234807 endingPage "1638" @default.
- W4387234807 startingPage "1638" @default.
- W4387234807 abstract "Preventing stunting is particularly important for healthy development across the life course. In Papua New Guinea (PNG), the prevalence of stunting in children under five years old has consistently not improved. Therefore, the primary objective of this study was to employ multiple machine learning algorithms to identify the most effective model and key predictors for stunting prediction in children in PNG. The study used data from the 2016–2018 Papua New Guinea Demographic Health Survey, including from 3380 children with complete height-for-age data. The least absolute shrinkage and selection operator (LASSO) and random-forest-recursive feature elimination were used for feature selection. Logistic regression, a conditional decision tree, a support vector machine with a radial basis function kernel, and an extreme gradient boosting machine (XGBoost) were employed to construct the prediction model. The performance of the final model was evaluated using accuracy, precision, recall, F1 score, and area under the curve (AUC). The results of the study showed that LASSO-XGBoost has the best performance for predicting stunting in PNG (AUC: 0.765; 95% CI: 0.714–0.819) with accuracy, precision, recall, and F1 scores of 0.728, 0.715, 0.628, and 0.669, respectively. Combined with the SHAP value method, the optimal prediction model identified living in the Highlands Region, the age of the child, being in the richest family, and having a larger or smaller birth size as the top five important characteristics for predicting stunting. Based on the model, the findings support the necessity of preventing stunting early in life. Emphasizing the nutritional status of vulnerable maternal and child populations in PNG is recommended to promote maternal and child health and overall well-being." @default.
- W4387234807 created "2023-10-02" @default.
- W4387234807 creator A5020044908 @default.
- W4387234807 creator A5031924291 @default.
- W4387234807 creator A5063512998 @default.
- W4387234807 date "2023-09-30" @default.
- W4387234807 modified "2023-10-16" @default.
- W4387234807 title "Machine Learning Algorithms for Predicting Stunting among Under-Five Children in Papua New Guinea" @default.
- W4387234807 cites W1528770034 @default.
- W4387234807 cites W1983214907 @default.
- W4387234807 cites W2003658851 @default.
- W4387234807 cites W2019385562 @default.
- W4387234807 cites W2020089616 @default.
- W4387234807 cites W2021026113 @default.
- W4387234807 cites W2044411810 @default.
- W4387234807 cites W2061811251 @default.
- W4387234807 cites W2071620581 @default.
- W4387234807 cites W2091209607 @default.
- W4387234807 cites W2096601431 @default.
- W4387234807 cites W2109259959 @default.
- W4387234807 cites W2123998733 @default.
- W4387234807 cites W2157065916 @default.
- W4387234807 cites W2170505850 @default.
- W4387234807 cites W2278688526 @default.
- W4387234807 cites W2340601058 @default.
- W4387234807 cites W2401598834 @default.
- W4387234807 cites W2528342610 @default.
- W4387234807 cites W2574179923 @default.
- W4387234807 cites W2597961459 @default.
- W4387234807 cites W2744654881 @default.
- W4387234807 cites W2767627283 @default.
- W4387234807 cites W2794297586 @default.
- W4387234807 cites W2891385203 @default.
- W4387234807 cites W2913623384 @default.
- W4387234807 cites W2915590742 @default.
- W4387234807 cites W2918408501 @default.
- W4387234807 cites W2940010972 @default.
- W4387234807 cites W2958696334 @default.
- W4387234807 cites W2990217975 @default.
- W4387234807 cites W3010156620 @default.
- W4387234807 cites W3025213933 @default.
- W4387234807 cites W3032951504 @default.
- W4387234807 cites W3033936120 @default.
- W4387234807 cites W3037126595 @default.
- W4387234807 cites W3080115605 @default.
- W4387234807 cites W3085293637 @default.
- W4387234807 cites W3105658959 @default.
- W4387234807 cites W3134366181 @default.
- W4387234807 cites W3152628497 @default.
- W4387234807 cites W3157025736 @default.
- W4387234807 cites W3167179910 @default.
- W4387234807 cites W3172724059 @default.
- W4387234807 cites W3194343069 @default.
- W4387234807 cites W3208235678 @default.
- W4387234807 cites W4213138465 @default.
- W4387234807 cites W4224287576 @default.
- W4387234807 cites W4385640592 @default.
- W4387234807 doi "https://doi.org/10.3390/children10101638" @default.
- W4387234807 hasPublicationYear "2023" @default.
- W4387234807 type Work @default.
- W4387234807 citedByCount "0" @default.
- W4387234807 crossrefType "journal-article" @default.
- W4387234807 hasAuthorship W4387234807A5020044908 @default.
- W4387234807 hasAuthorship W4387234807A5031924291 @default.
- W4387234807 hasAuthorship W4387234807A5063512998 @default.
- W4387234807 hasBestOaLocation W43872348071 @default.
- W4387234807 hasConcept C105795698 @default.
- W4387234807 hasConcept C11413529 @default.
- W4387234807 hasConcept C119857082 @default.
- W4387234807 hasConcept C12267149 @default.
- W4387234807 hasConcept C136764020 @default.
- W4387234807 hasConcept C148483581 @default.
- W4387234807 hasConcept C151956035 @default.
- W4387234807 hasConcept C154945302 @default.
- W4387234807 hasConcept C169258074 @default.
- W4387234807 hasConcept C170964787 @default.
- W4387234807 hasConcept C2549261 @default.
- W4387234807 hasConcept C3017739461 @default.
- W4387234807 hasConcept C33923547 @default.
- W4387234807 hasConcept C37616216 @default.
- W4387234807 hasConcept C41008148 @default.
- W4387234807 hasConcept C58471807 @default.
- W4387234807 hasConcept C70153297 @default.
- W4387234807 hasConcept C84525736 @default.
- W4387234807 hasConcept C95457728 @default.
- W4387234807 hasConceptScore W4387234807C105795698 @default.
- W4387234807 hasConceptScore W4387234807C11413529 @default.
- W4387234807 hasConceptScore W4387234807C119857082 @default.
- W4387234807 hasConceptScore W4387234807C12267149 @default.
- W4387234807 hasConceptScore W4387234807C136764020 @default.
- W4387234807 hasConceptScore W4387234807C148483581 @default.
- W4387234807 hasConceptScore W4387234807C151956035 @default.
- W4387234807 hasConceptScore W4387234807C154945302 @default.
- W4387234807 hasConceptScore W4387234807C169258074 @default.
- W4387234807 hasConceptScore W4387234807C170964787 @default.
- W4387234807 hasConceptScore W4387234807C2549261 @default.
- W4387234807 hasConceptScore W4387234807C3017739461 @default.
- W4387234807 hasConceptScore W4387234807C33923547 @default.