Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387235732> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4387235732 abstract "Abstract The development of Production Optimization Models, exemplified by Mixed Integer Non-Linear Programming Models, aims to optimize process parameters within a network of Gas-Oil Separation Plants, ultimately resulting in minimal energy consumption while achieving production targets. The efficacy of these models hinges upon the accuracy of digital twins for compressors and pumps. This paper presents the methodology employed to ensure that the model reflects actual equipment performance. Additionally, the paper outlines a plan for introducing Artificial Intelligence (AI) into the process model to further validate and optimize production. A process model was established for each major energy user of significance by employing the design performance curves. The model's outcomes, which included pressures, temperatures, and power consumption, were subsequently compared to actual process data retrieved from the data historian and adjusted accordingly. This was particularly crucial for equipment that exhibited considerable deviation from the original design. In some facilities, flow, pressure, or temperature data were inconsistent, prompting the calibration of the model to align it with the process data of the highest level of confidence. Additionally, process data was utilized to estimate the facility's backpressure in the absence of a hydraulic model. Changes made to the system were validated by examining the accuracy of the system curves, which were accomplished by matching predicted outcomes with actual results. The implementation of precisely calibrated digital twins within the process model significantly improved the Production Optimization Models’ ability to forecast the ideal distribution of production. The model's output corresponded closely with the actual energy consumption of the facility, resulting in considerable savings in energy consumption and costs, as well as a reduction in CO2 emissions. As equipment performance is known to evolve over time due to factors such as shutdowns, maintenance, and frequency of changeover, an Artificial Intelligence-based system is being developed to validate the process model and optimize it over time. Various process and equipment parameters are known to affect performance, and these will be taken into account during system development. The process of calibrating process models through the utilization of simulation software to generate a digital twin is a critical stage in guaranteeing the accuracy of the production optimization model. This paper presents a novel approach that incorporates any observed deviations in the digital twin's performance. Furthermore, the paper introduces the concept of using Artificial Intelligence to validate the performance of rotating equipment." @default.
- W4387235732 created "2023-10-02" @default.
- W4387235732 creator A5062293637 @default.
- W4387235732 creator A5086475296 @default.
- W4387235732 creator A5092980832 @default.
- W4387235732 creator A5092980833 @default.
- W4387235732 creator A5092980834 @default.
- W4387235732 date "2023-10-02" @default.
- W4387235732 modified "2023-10-16" @default.
- W4387235732 title "Enhancing Digital Twin Accuracy for Energy Efficiency and Decarbonization" @default.
- W4387235732 cites W2999998231 @default.
- W4387235732 doi "https://doi.org/10.2118/215990-ms" @default.
- W4387235732 hasPublicationYear "2023" @default.
- W4387235732 type Work @default.
- W4387235732 citedByCount "0" @default.
- W4387235732 crossrefType "proceedings-article" @default.
- W4387235732 hasAuthorship W4387235732A5062293637 @default.
- W4387235732 hasAuthorship W4387235732A5086475296 @default.
- W4387235732 hasAuthorship W4387235732A5092980832 @default.
- W4387235732 hasAuthorship W4387235732A5092980833 @default.
- W4387235732 hasAuthorship W4387235732A5092980834 @default.
- W4387235732 hasConcept C105795698 @default.
- W4387235732 hasConcept C111919701 @default.
- W4387235732 hasConcept C119599485 @default.
- W4387235732 hasConcept C127413603 @default.
- W4387235732 hasConcept C13736549 @default.
- W4387235732 hasConcept C139719470 @default.
- W4387235732 hasConcept C162324750 @default.
- W4387235732 hasConcept C165064840 @default.
- W4387235732 hasConcept C165838908 @default.
- W4387235732 hasConcept C186370098 @default.
- W4387235732 hasConcept C2742236 @default.
- W4387235732 hasConcept C2778348673 @default.
- W4387235732 hasConcept C2780165032 @default.
- W4387235732 hasConcept C33923547 @default.
- W4387235732 hasConcept C41008148 @default.
- W4387235732 hasConcept C98045186 @default.
- W4387235732 hasConceptScore W4387235732C105795698 @default.
- W4387235732 hasConceptScore W4387235732C111919701 @default.
- W4387235732 hasConceptScore W4387235732C119599485 @default.
- W4387235732 hasConceptScore W4387235732C127413603 @default.
- W4387235732 hasConceptScore W4387235732C13736549 @default.
- W4387235732 hasConceptScore W4387235732C139719470 @default.
- W4387235732 hasConceptScore W4387235732C162324750 @default.
- W4387235732 hasConceptScore W4387235732C165064840 @default.
- W4387235732 hasConceptScore W4387235732C165838908 @default.
- W4387235732 hasConceptScore W4387235732C186370098 @default.
- W4387235732 hasConceptScore W4387235732C2742236 @default.
- W4387235732 hasConceptScore W4387235732C2778348673 @default.
- W4387235732 hasConceptScore W4387235732C2780165032 @default.
- W4387235732 hasConceptScore W4387235732C33923547 @default.
- W4387235732 hasConceptScore W4387235732C41008148 @default.
- W4387235732 hasConceptScore W4387235732C98045186 @default.
- W4387235732 hasLocation W43872357321 @default.
- W4387235732 hasOpenAccess W4387235732 @default.
- W4387235732 hasPrimaryLocation W43872357321 @default.
- W4387235732 hasRelatedWork W2020845479 @default.
- W4387235732 hasRelatedWork W2025004390 @default.
- W4387235732 hasRelatedWork W2029268337 @default.
- W4387235732 hasRelatedWork W2072862869 @default.
- W4387235732 hasRelatedWork W2089393798 @default.
- W4387235732 hasRelatedWork W2283051035 @default.
- W4387235732 hasRelatedWork W2305301640 @default.
- W4387235732 hasRelatedWork W2903687191 @default.
- W4387235732 hasRelatedWork W2937192525 @default.
- W4387235732 hasRelatedWork W3193819027 @default.
- W4387235732 isParatext "false" @default.
- W4387235732 isRetracted "false" @default.
- W4387235732 workType "article" @default.