Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387238412> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4387238412 endingPage "105546" @default.
- W4387238412 startingPage "105546" @default.
- W4387238412 abstract "Early diagnosis of oral cancer is crucial for improving patient outcomes and saving lives. However, inaccurate and improper diagnosis can hinder effective treatment. This paper presents a novel method for detecting oral cancer using an optimized version of Convolutional Neural Network (CNN). While basic CNNs have been widely used for image classification tasks, the incorporation of the Seagull Optimization Algorithm and Particle Swarm Optimization Algorithm in optimizing the CNN architecture specifically for oral cancer detection is a unique approach that is provided in this study. By combining these algorithms, the proposed method optimizes the CNN's architecture, parameters, and training process specifically for oral cancer detection. This optimization enhances the performance and accuracy of the CNN in identifying cancerous regions in oral images. Unlike previous approaches, our method incorporates advanced image processing techniques, including noise reduction, contrast enhancement, and data augmentation, to enhance the quality of input data extracted from the Oral Cancer (Lips and Tongue) images (OCI) dataset. The optimized CNN architecture uses its ability to learn intricate patterns and features from the enhanced images, enabling more accurate identification of cancerous regions. To evaluate the effectiveness of our approach, we compare it against Textural analysis, FCM, CNN, R-CNN, and ResNet-101 using four measurement indices. Results demonstrate that our proposed CSOA-based CNN system achieves the highest accuracy rate (96.94%) compared to other methods, indicating its superior performance in oral cancer detection. Furthermore, our precision rate of 94.65% and recall rate of 91.60% highlight the model's high correctness and positive classification ability. Finally, our proposed method achieves the highest F1-score (88.55%), emphasizing its superiority over other comparative methods. Through our innovative integration of the Seagull Optimization Algorithm and Particle Swarm Optimization Algorithm with CNN, coupled with advanced image processing techniques, we provide a reliable and effective solution for early detection of oral cancer." @default.
- W4387238412 created "2023-10-02" @default.
- W4387238412 creator A5064367564 @default.
- W4387238412 creator A5071179108 @default.
- W4387238412 creator A5081591841 @default.
- W4387238412 date "2024-01-01" @default.
- W4387238412 modified "2023-10-08" @default.
- W4387238412 title "Oral cancer detection using convolutional neural network optimized by combined seagull optimization algorithm" @default.
- W4387238412 cites W2097263684 @default.
- W4387238412 cites W2168081761 @default.
- W4387238412 cites W2726582952 @default.
- W4387238412 cites W2790196016 @default.
- W4387238412 cites W2794393856 @default.
- W4387238412 cites W2799903018 @default.
- W4387238412 cites W2890460335 @default.
- W4387238412 cites W2902421512 @default.
- W4387238412 cites W2907632336 @default.
- W4387238412 cites W2942060393 @default.
- W4387238412 cites W3033396344 @default.
- W4387238412 cites W3041013979 @default.
- W4387238412 cites W3044073403 @default.
- W4387238412 cites W3085674933 @default.
- W4387238412 cites W3088255189 @default.
- W4387238412 cites W3092490874 @default.
- W4387238412 cites W3102598125 @default.
- W4387238412 cites W3163097361 @default.
- W4387238412 cites W3213797046 @default.
- W4387238412 cites W4205359793 @default.
- W4387238412 cites W4230092254 @default.
- W4387238412 cites W4309760235 @default.
- W4387238412 cites W4309771115 @default.
- W4387238412 cites W4319034067 @default.
- W4387238412 cites W4379260314 @default.
- W4387238412 doi "https://doi.org/10.1016/j.bspc.2023.105546" @default.
- W4387238412 hasPublicationYear "2024" @default.
- W4387238412 type Work @default.
- W4387238412 citedByCount "0" @default.
- W4387238412 crossrefType "journal-article" @default.
- W4387238412 hasAuthorship W4387238412A5064367564 @default.
- W4387238412 hasAuthorship W4387238412A5071179108 @default.
- W4387238412 hasAuthorship W4387238412A5081591841 @default.
- W4387238412 hasConcept C11413529 @default.
- W4387238412 hasConcept C153180895 @default.
- W4387238412 hasConcept C154945302 @default.
- W4387238412 hasConcept C41008148 @default.
- W4387238412 hasConcept C55439883 @default.
- W4387238412 hasConcept C81363708 @default.
- W4387238412 hasConcept C85617194 @default.
- W4387238412 hasConceptScore W4387238412C11413529 @default.
- W4387238412 hasConceptScore W4387238412C153180895 @default.
- W4387238412 hasConceptScore W4387238412C154945302 @default.
- W4387238412 hasConceptScore W4387238412C41008148 @default.
- W4387238412 hasConceptScore W4387238412C55439883 @default.
- W4387238412 hasConceptScore W4387238412C81363708 @default.
- W4387238412 hasConceptScore W4387238412C85617194 @default.
- W4387238412 hasLocation W43872384121 @default.
- W4387238412 hasOpenAccess W4387238412 @default.
- W4387238412 hasPrimaryLocation W43872384121 @default.
- W4387238412 hasRelatedWork W1508895727 @default.
- W4387238412 hasRelatedWork W1667647204 @default.
- W4387238412 hasRelatedWork W2018477250 @default.
- W4387238412 hasRelatedWork W2404647514 @default.
- W4387238412 hasRelatedWork W2725786787 @default.
- W4387238412 hasRelatedWork W3008339103 @default.
- W4387238412 hasRelatedWork W3119814709 @default.
- W4387238412 hasRelatedWork W35919320 @default.
- W4387238412 hasRelatedWork W4241418540 @default.
- W4387238412 hasRelatedWork W4283160672 @default.
- W4387238412 hasVolume "87" @default.
- W4387238412 isParatext "false" @default.
- W4387238412 isRetracted "false" @default.
- W4387238412 workType "article" @default.