Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387244297> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387244297 abstract "Early detection of diabetes is crucial because of its incurable nature. Several diabetes prediction models have been developed using machine learning techniques (MLTs). The performance of MLTs varies for different accuracy measures. Thus, selecting appropriate MLTs for diabetes prediction is challenging. This paper proposes a multi-criteria decision-making (MCDM) based framework for evaluating MLTs applied to diabetes prediction. Initially, three MCDM methods—WSM, TOPSIS, and VIKOR—are used to determine the individual ranks of MLTs for diabetes prediction performance by using various comparable performance measures (PMs). Next, a fusion approach is used to determine the final rank of the MLTs. The proposed method is validated by assessing the performance of 10 MLTs on the Pima Indian diabetes dataset using eight evaluation metrics for diabetes prediction. Based on the final MCDM rankings, logistic regression is recommended for diabetes prediction modeling." @default.
- W4387244297 created "2023-10-03" @default.
- W4387244297 creator A5052226357 @default.
- W4387244297 creator A5054377498 @default.
- W4387244297 date "2023-09-21" @default.
- W4387244297 modified "2023-10-03" @default.
- W4387244297 title "A Novel MCDM-Based Framework to Recommend Machine Learning Techniques for Diabetes Prediction" @default.
- W4387244297 cites W2056427612 @default.
- W4387244297 cites W2065109455 @default.
- W4387244297 cites W2133990480 @default.
- W4387244297 cites W2151554678 @default.
- W4387244297 cites W2178584716 @default.
- W4387244297 cites W2554915206 @default.
- W4387244297 cites W2954085822 @default.
- W4387244297 cites W2971014185 @default.
- W4387244297 cites W3083610965 @default.
- W4387244297 cites W3130449168 @default.
- W4387244297 cites W3134696896 @default.
- W4387244297 cites W3135225825 @default.
- W4387244297 cites W3159624482 @default.
- W4387244297 cites W3160768652 @default.
- W4387244297 cites W38708963 @default.
- W4387244297 cites W4200265911 @default.
- W4387244297 cites W4206470046 @default.
- W4387244297 cites W4206627303 @default.
- W4387244297 cites W4206980706 @default.
- W4387244297 cites W4210733929 @default.
- W4387244297 cites W4220755962 @default.
- W4387244297 cites W4221107627 @default.
- W4387244297 cites W4283723322 @default.
- W4387244297 cites W4296875677 @default.
- W4387244297 cites W4298008053 @default.
- W4387244297 cites W4307727682 @default.
- W4387244297 cites W4311364090 @default.
- W4387244297 cites W4312656871 @default.
- W4387244297 cites W4320921172 @default.
- W4387244297 doi "https://doi.org/10.46604/ijeti.2023.11837" @default.
- W4387244297 hasPublicationYear "2023" @default.
- W4387244297 type Work @default.
- W4387244297 citedByCount "0" @default.
- W4387244297 crossrefType "journal-article" @default.
- W4387244297 hasAuthorship W4387244297A5052226357 @default.
- W4387244297 hasAuthorship W4387244297A5054377498 @default.
- W4387244297 hasBestOaLocation W43872442971 @default.
- W4387244297 hasConcept C11105738 @default.
- W4387244297 hasConcept C119857082 @default.
- W4387244297 hasConcept C124101348 @default.
- W4387244297 hasConcept C127413603 @default.
- W4387244297 hasConcept C151956035 @default.
- W4387244297 hasConcept C154945302 @default.
- W4387244297 hasConcept C41008148 @default.
- W4387244297 hasConcept C42475967 @default.
- W4387244297 hasConcept C51566761 @default.
- W4387244297 hasConceptScore W4387244297C11105738 @default.
- W4387244297 hasConceptScore W4387244297C119857082 @default.
- W4387244297 hasConceptScore W4387244297C124101348 @default.
- W4387244297 hasConceptScore W4387244297C127413603 @default.
- W4387244297 hasConceptScore W4387244297C151956035 @default.
- W4387244297 hasConceptScore W4387244297C154945302 @default.
- W4387244297 hasConceptScore W4387244297C41008148 @default.
- W4387244297 hasConceptScore W4387244297C42475967 @default.
- W4387244297 hasConceptScore W4387244297C51566761 @default.
- W4387244297 hasLocation W43872442971 @default.
- W4387244297 hasOpenAccess W4387244297 @default.
- W4387244297 hasPrimaryLocation W43872442971 @default.
- W4387244297 hasRelatedWork W2612801499 @default.
- W4387244297 hasRelatedWork W2778781604 @default.
- W4387244297 hasRelatedWork W2899084033 @default.
- W4387244297 hasRelatedWork W2961085424 @default.
- W4387244297 hasRelatedWork W2963319272 @default.
- W4387244297 hasRelatedWork W3154161952 @default.
- W4387244297 hasRelatedWork W3161336247 @default.
- W4387244297 hasRelatedWork W3196600246 @default.
- W4387244297 hasRelatedWork W4235219488 @default.
- W4387244297 hasRelatedWork W4312604180 @default.
- W4387244297 isParatext "false" @default.
- W4387244297 isRetracted "false" @default.
- W4387244297 workType "article" @default.