Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387244516> ?p ?o ?g. }
- W4387244516 endingPage "102324" @default.
- W4387244516 startingPage "102324" @default.
- W4387244516 abstract "Future prediction modeling of land use/land cover (LULC) is crucial for coastal regions due to unique challenges and vulnerabilities associated with these areas. This research aims to evaluate the performance of three models: logistic regression (LR), Artificial Neural Network (ANN), and Weight of Evidence (CA-WoE) combined with Cellular Automata (CA) to predict the future LULC change for the Sundarbans coastal area, straddling the international boundary of Bangladesh and India. Hybrid models of CA-LR, CA-ANN, and CA-WoE were applied to predict LULC changes for the Sundarbans deltaic region for 2030 and 2050, based on a host of spatial and environmental variables. The supervised machine learning algorithm of the Random Forest (RF) classification model was used to classify satellite images during 1990–2020 to create LULC maps. Image classification was based on four distinct LULC classes: (i) mangroves, (ii) waterbodies, (iii) built-up, and (iv) barren land. Respective percentage correctness (PCN) for model types of CA-LR, CA-ANN, and CA-WoE was 90.82%, 92.06%, and 92.12% with overall Cohen's kappa metrics (OKM) of 0.815, 0.841, and 0.842, respectively. Overall, CA-WoE model performance was superior to CA-ANN and CA-LR models in predicting LULC maps for 2030 and 2050. Model results suggest that future mangrove forest area in the Sundarbans will decrease, and waterbodies will increase in area by 2050. The findings of this study may guide future sustainable land use management in the Sundarbans. This study also provides model selection techniques for predicting coastal LULC changes worldwide." @default.
- W4387244516 created "2023-10-03" @default.
- W4387244516 creator A5001161612 @default.
- W4387244516 creator A5002620328 @default.
- W4387244516 creator A5011620305 @default.
- W4387244516 creator A5026931883 @default.
- W4387244516 creator A5029385522 @default.
- W4387244516 creator A5042216878 @default.
- W4387244516 creator A5047925911 @default.
- W4387244516 date "2023-10-01" @default.
- W4387244516 modified "2023-10-03" @default.
- W4387244516 title "Evaluation and mapping of predicted future land use changes using hybrid models in a coastal area" @default.
- W4387244516 cites W1481415019 @default.
- W4387244516 cites W1506719501 @default.
- W4387244516 cites W1723129825 @default.
- W4387244516 cites W1963877158 @default.
- W4387244516 cites W1971106301 @default.
- W4387244516 cites W2013168176 @default.
- W4387244516 cites W2016577007 @default.
- W4387244516 cites W2018018610 @default.
- W4387244516 cites W2026956677 @default.
- W4387244516 cites W2031736083 @default.
- W4387244516 cites W2032307057 @default.
- W4387244516 cites W2047096735 @default.
- W4387244516 cites W2054596833 @default.
- W4387244516 cites W2063907334 @default.
- W4387244516 cites W2079069441 @default.
- W4387244516 cites W2080225150 @default.
- W4387244516 cites W2083544646 @default.
- W4387244516 cites W2085415835 @default.
- W4387244516 cites W2087432101 @default.
- W4387244516 cites W2155952421 @default.
- W4387244516 cites W2159773298 @default.
- W4387244516 cites W2171730709 @default.
- W4387244516 cites W2261059368 @default.
- W4387244516 cites W2286695812 @default.
- W4387244516 cites W2301805150 @default.
- W4387244516 cites W2490459832 @default.
- W4387244516 cites W2511481377 @default.
- W4387244516 cites W2517637116 @default.
- W4387244516 cites W2560116382 @default.
- W4387244516 cites W2619048510 @default.
- W4387244516 cites W2648242067 @default.
- W4387244516 cites W2737005468 @default.
- W4387244516 cites W2763597051 @default.
- W4387244516 cites W2765210108 @default.
- W4387244516 cites W2766228856 @default.
- W4387244516 cites W2766922025 @default.
- W4387244516 cites W2789453329 @default.
- W4387244516 cites W2790304466 @default.
- W4387244516 cites W2791504928 @default.
- W4387244516 cites W2793927960 @default.
- W4387244516 cites W2810066864 @default.
- W4387244516 cites W2897856113 @default.
- W4387244516 cites W2898100821 @default.
- W4387244516 cites W2902350589 @default.
- W4387244516 cites W2911964244 @default.
- W4387244516 cites W2937560477 @default.
- W4387244516 cites W2947066650 @default.
- W4387244516 cites W2963268125 @default.
- W4387244516 cites W2989015665 @default.
- W4387244516 cites W2995794636 @default.
- W4387244516 cites W3001716660 @default.
- W4387244516 cites W3014220046 @default.
- W4387244516 cites W3022978900 @default.
- W4387244516 cites W3036585236 @default.
- W4387244516 cites W3045585619 @default.
- W4387244516 cites W3080542993 @default.
- W4387244516 cites W3088162569 @default.
- W4387244516 cites W3090239699 @default.
- W4387244516 cites W3092184902 @default.
- W4387244516 cites W3107718025 @default.
- W4387244516 cites W3114653318 @default.
- W4387244516 cites W3128800270 @default.
- W4387244516 cites W3132850492 @default.
- W4387244516 cites W3136555658 @default.
- W4387244516 cites W3141132941 @default.
- W4387244516 cites W3149506652 @default.
- W4387244516 cites W3151057550 @default.
- W4387244516 cites W3151992044 @default.
- W4387244516 cites W3159068499 @default.
- W4387244516 cites W3165568892 @default.
- W4387244516 cites W3166145371 @default.
- W4387244516 cites W3185262102 @default.
- W4387244516 cites W3200100229 @default.
- W4387244516 cites W3215531961 @default.
- W4387244516 cites W4200050929 @default.
- W4387244516 cites W4205975943 @default.
- W4387244516 cites W4210361695 @default.
- W4387244516 cites W4211170843 @default.
- W4387244516 cites W4220659660 @default.
- W4387244516 cites W4220816157 @default.
- W4387244516 cites W4224436525 @default.
- W4387244516 cites W4225530673 @default.
- W4387244516 cites W4306315131 @default.
- W4387244516 cites W4311853211 @default.
- W4387244516 cites W4312084665 @default.
- W4387244516 cites W4312223320 @default.