Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387244566> ?p ?o ?g. }
- W4387244566 abstract "The mammalian target of rapamycin (mTOR) is a protein kinase of the PI3K/Akt signaling pathway that regulates cell growth and division and is an attractive target for cancer therapy. Many reports on finding alternative mTOR inhibitors available in a database contain a mixture of active compound data with different mechanisms, which results in an increased complexity for training the machine learning models based on the chemical features of active compounds. In this study, a deep learning model supported by principal component analysis (PCA) and structural methods was used to search for an alternative mTOR inhibitor from mushrooms. The mTORC1 active compound data set from the PubChem database was first filtered for only the compounds resided near the first-generation inhibitors (rapalogs) within the first two PCA coordinates of chemical features. A deep learning model trained by the filtered data set captured the main characteristics of rapalogs and displayed the importance of steroid cores. After that, another layer of virtual screening by molecular docking calculations was performed on ternary complexes of FKBP12–FRB domains and six compound candidates with high “active” probability scores predicted by the deep learning models. Finally, all-atom molecular dynamics simulations and MMPBSA binding energy analysis were performed on two selected candidates in comparison to rapamycin, which confirmed the importance of ring groups and steroid cores for interaction networks. Trihydroxysterol from Lentinus polychrous Lev. was predicted as an interesting candidate due to the small but effective interaction network that facilitated FKBP12–FRB interactions and further stabilized the ternary complex." @default.
- W4387244566 created "2023-10-03" @default.
- W4387244566 creator A5013407366 @default.
- W4387244566 creator A5030117423 @default.
- W4387244566 creator A5042045672 @default.
- W4387244566 creator A5044496694 @default.
- W4387244566 creator A5049204526 @default.
- W4387244566 creator A5061752109 @default.
- W4387244566 creator A5069078477 @default.
- W4387244566 date "2023-10-02" @default.
- W4387244566 modified "2023-10-03" @default.
- W4387244566 title "Combined Deep Learning and Molecular Modeling Techniques on the Virtual Screening of New mTOR Inhibitors from the Thai Mushroom Database" @default.
- W4387244566 cites W1031578623 @default.
- W4387244566 cites W1526339950 @default.
- W4387244566 cites W1963727442 @default.
- W4387244566 cites W1968666708 @default.
- W4387244566 cites W1976979132 @default.
- W4387244566 cites W1980360183 @default.
- W4387244566 cites W1983791520 @default.
- W4387244566 cites W1995816895 @default.
- W4387244566 cites W2005448885 @default.
- W4387244566 cites W2007110714 @default.
- W4387244566 cites W2008756733 @default.
- W4387244566 cites W2010450914 @default.
- W4387244566 cites W2015749195 @default.
- W4387244566 cites W2025625972 @default.
- W4387244566 cites W2027962532 @default.
- W4387244566 cites W2029348880 @default.
- W4387244566 cites W2037788435 @default.
- W4387244566 cites W2044172327 @default.
- W4387244566 cites W2047057570 @default.
- W4387244566 cites W2057106513 @default.
- W4387244566 cites W2059872964 @default.
- W4387244566 cites W2061668669 @default.
- W4387244566 cites W2074473216 @default.
- W4387244566 cites W2081912151 @default.
- W4387244566 cites W2086993824 @default.
- W4387244566 cites W2092419949 @default.
- W4387244566 cites W2098912234 @default.
- W4387244566 cites W2105668062 @default.
- W4387244566 cites W2107218721 @default.
- W4387244566 cites W2110604215 @default.
- W4387244566 cites W2111213622 @default.
- W4387244566 cites W2113317783 @default.
- W4387244566 cites W2114327610 @default.
- W4387244566 cites W2114859236 @default.
- W4387244566 cites W2123155231 @default.
- W4387244566 cites W2127063807 @default.
- W4387244566 cites W2129227644 @default.
- W4387244566 cites W2134719928 @default.
- W4387244566 cites W2146070267 @default.
- W4387244566 cites W2148848488 @default.
- W4387244566 cites W2150028503 @default.
- W4387244566 cites W2152600551 @default.
- W4387244566 cites W2153940383 @default.
- W4387244566 cites W2154382417 @default.
- W4387244566 cites W2158534713 @default.
- W4387244566 cites W2158764247 @default.
- W4387244566 cites W2167789852 @default.
- W4387244566 cites W2169396440 @default.
- W4387244566 cites W2177317049 @default.
- W4387244566 cites W2260883352 @default.
- W4387244566 cites W2335835207 @default.
- W4387244566 cites W2408301800 @default.
- W4387244566 cites W2412215729 @default.
- W4387244566 cites W2517054293 @default.
- W4387244566 cites W2593816418 @default.
- W4387244566 cites W2626632314 @default.
- W4387244566 cites W2753412117 @default.
- W4387244566 cites W2757485447 @default.
- W4387244566 cites W2769350115 @default.
- W4387244566 cites W2999835505 @default.
- W4387244566 cites W3022202137 @default.
- W4387244566 cites W3046562558 @default.
- W4387244566 cites W3129198319 @default.
- W4387244566 cites W3150527518 @default.
- W4387244566 cites W4210670306 @default.
- W4387244566 cites W4242786943 @default.
- W4387244566 cites W4289274885 @default.
- W4387244566 cites W4292566549 @default.
- W4387244566 doi "https://doi.org/10.1021/acsomega.3c04827" @default.
- W4387244566 hasPublicationYear "2023" @default.
- W4387244566 type Work @default.
- W4387244566 citedByCount "0" @default.
- W4387244566 crossrefType "journal-article" @default.
- W4387244566 hasAuthorship W4387244566A5013407366 @default.
- W4387244566 hasAuthorship W4387244566A5030117423 @default.
- W4387244566 hasAuthorship W4387244566A5042045672 @default.
- W4387244566 hasAuthorship W4387244566A5044496694 @default.
- W4387244566 hasAuthorship W4387244566A5049204526 @default.
- W4387244566 hasAuthorship W4387244566A5061752109 @default.
- W4387244566 hasAuthorship W4387244566A5069078477 @default.
- W4387244566 hasBestOaLocation W43872445661 @default.
- W4387244566 hasConcept C103697762 @default.
- W4387244566 hasConcept C108583219 @default.
- W4387244566 hasConcept C119857082 @default.
- W4387244566 hasConcept C154945302 @default.
- W4387244566 hasConcept C155261790 @default.
- W4387244566 hasConcept C158180186 @default.
- W4387244566 hasConcept C159110408 @default.