Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387244673> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4387244673 abstract "Abstract Objective. Sleep staging is the basis for sleep quality assessment and diagnosis of sleep-related disorders. In response to the inadequacy of traditional manual judgement of sleep stages, using machine learning techniques for automatic sleep staging has become a hot topic. To improve the performance of sleep staging, numerous studies have extracted a large number of sleep-related characteristics. However, there are redundant and irrelevant features in the high-dimensional features that reduce the classification accuracy. To address this issue, an effective hybrid feature selection method based on the entropy weight method is proposed in this paper for automatic sleep staging. Approach. Firstly, we preprocess the four modal polysomnography (PSG) signals, including electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG). Secondly, the time domain, frequency domain and nonlinear features are extracted from the preprocessed signals, with a total of 185 features. Then, in order to acquire characteristics of the multi-modal signals that are highly correlated with the sleep stages, the proposed hybrid feature selection method is applied to choose effective features. This method is divided into two stages. In stage I, the entropy weight method is employed to combine two filter methods to build a subset of features. This stage evaluates features based on information theory and distance metrics, which can quickly obtain a subset of features and retain the relevant features. In stage II, Sequential Forward Selection (SFS) is used to evaluate the subset of features and eliminate redundant features. Further more, to achieve better performance of classification, an ensemble model based on Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Random Forest (RF) and Multilayer Perceptron (MLP) is finally constructed for classifying sleep stages. Main results. The experiment using the CAP sleep database is performed to assess the performance of the method proposed in this paper. The proposed hybrid feature selection method chooses only 30 features highly correlated to sleep stages. The accuracy, F1 score and Kappa coefficient of 6 class sleep staging reach 88.86%, 83.15% and 0.8531, respectively. Significance. Experimental results show the effectiveness of the proposed method compared to the existing state-of-the-art studies. It greatly reduces the number of features required while achieving outstanding auto-sleep staging results." @default.
- W4387244673 created "2023-10-03" @default.
- W4387244673 creator A5016770120 @default.
- W4387244673 creator A5020271369 @default.
- W4387244673 creator A5037505784 @default.
- W4387244673 creator A5043368995 @default.
- W4387244673 creator A5078656438 @default.
- W4387244673 date "2023-10-02" @default.
- W4387244673 modified "2023-10-17" @default.
- W4387244673 title "An effective hybrid feature selection using entropy weight method for automatic sleep staging" @default.
- W4387244673 doi "https://doi.org/10.1088/1361-6579/acff35" @default.
- W4387244673 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37783214" @default.
- W4387244673 hasPublicationYear "2023" @default.
- W4387244673 type Work @default.
- W4387244673 citedByCount "0" @default.
- W4387244673 crossrefType "journal-article" @default.
- W4387244673 hasAuthorship W4387244673A5016770120 @default.
- W4387244673 hasAuthorship W4387244673A5020271369 @default.
- W4387244673 hasAuthorship W4387244673A5037505784 @default.
- W4387244673 hasAuthorship W4387244673A5043368995 @default.
- W4387244673 hasAuthorship W4387244673A5078656438 @default.
- W4387244673 hasConcept C106301342 @default.
- W4387244673 hasConcept C118552586 @default.
- W4387244673 hasConcept C119857082 @default.
- W4387244673 hasConcept C121332964 @default.
- W4387244673 hasConcept C138885662 @default.
- W4387244673 hasConcept C148483581 @default.
- W4387244673 hasConcept C153180895 @default.
- W4387244673 hasConcept C154945302 @default.
- W4387244673 hasConcept C15744967 @default.
- W4387244673 hasConcept C185592680 @default.
- W4387244673 hasConcept C188027245 @default.
- W4387244673 hasConcept C2776401178 @default.
- W4387244673 hasConcept C2778205975 @default.
- W4387244673 hasConcept C2910364982 @default.
- W4387244673 hasConcept C41008148 @default.
- W4387244673 hasConcept C41895202 @default.
- W4387244673 hasConcept C522805319 @default.
- W4387244673 hasConcept C52622490 @default.
- W4387244673 hasConcept C62520636 @default.
- W4387244673 hasConcept C71139939 @default.
- W4387244673 hasConceptScore W4387244673C106301342 @default.
- W4387244673 hasConceptScore W4387244673C118552586 @default.
- W4387244673 hasConceptScore W4387244673C119857082 @default.
- W4387244673 hasConceptScore W4387244673C121332964 @default.
- W4387244673 hasConceptScore W4387244673C138885662 @default.
- W4387244673 hasConceptScore W4387244673C148483581 @default.
- W4387244673 hasConceptScore W4387244673C153180895 @default.
- W4387244673 hasConceptScore W4387244673C154945302 @default.
- W4387244673 hasConceptScore W4387244673C15744967 @default.
- W4387244673 hasConceptScore W4387244673C185592680 @default.
- W4387244673 hasConceptScore W4387244673C188027245 @default.
- W4387244673 hasConceptScore W4387244673C2776401178 @default.
- W4387244673 hasConceptScore W4387244673C2778205975 @default.
- W4387244673 hasConceptScore W4387244673C2910364982 @default.
- W4387244673 hasConceptScore W4387244673C41008148 @default.
- W4387244673 hasConceptScore W4387244673C41895202 @default.
- W4387244673 hasConceptScore W4387244673C522805319 @default.
- W4387244673 hasConceptScore W4387244673C52622490 @default.
- W4387244673 hasConceptScore W4387244673C62520636 @default.
- W4387244673 hasConceptScore W4387244673C71139939 @default.
- W4387244673 hasFunder F4320336581 @default.
- W4387244673 hasLocation W43872446731 @default.
- W4387244673 hasLocation W43872446732 @default.
- W4387244673 hasOpenAccess W4387244673 @default.
- W4387244673 hasPrimaryLocation W43872446731 @default.
- W4387244673 hasRelatedWork W1964120219 @default.
- W4387244673 hasRelatedWork W2000165426 @default.
- W4387244673 hasRelatedWork W2144059113 @default.
- W4387244673 hasRelatedWork W2146076056 @default.
- W4387244673 hasRelatedWork W2385132419 @default.
- W4387244673 hasRelatedWork W2546942002 @default.
- W4387244673 hasRelatedWork W2772780115 @default.
- W4387244673 hasRelatedWork W2811390910 @default.
- W4387244673 hasRelatedWork W3003836766 @default.
- W4387244673 hasRelatedWork W2345184372 @default.
- W4387244673 isParatext "false" @default.
- W4387244673 isRetracted "false" @default.
- W4387244673 workType "article" @default.