Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387245828> ?p ?o ?g. }
- W4387245828 abstract "Stomata play an essential role in regulating water and carbon dioxide levels in plant leaves, which is important for photosynthesis. Previous deep learning-based plant stomata detection methods are based on horizontal detection. The detection anchor boxes of deep learning model are horizontal, while the angle of stomata is randomized, so it is not possible to calculate stomata traits directly from the detection anchor boxes. Additional processing of image (e.g., rotating image) is required before detecting stomata and calculating stomata traits. This paper proposes a novel approach, named DeepRSD (deep learning-based rotating stomata detection), for detecting rotating stomata and calculating stomata basic traits at the same time. Simultaneously, the stomata conductance loss function is introduced in the DeepRSD model training, which improves the efficiency of stomata detection and conductance calculation. The experimental results demonstrate that the DeepRSD model reaches 94.3% recognition accuracy for stomata of maize leaf. The proposed method can help researchers conduct large-scale studies on stomata morphology, structure, and stomata conductance models." @default.
- W4387245828 created "2023-10-03" @default.
- W4387245828 creator A5004956076 @default.
- W4387245828 creator A5047348227 @default.
- W4387245828 creator A5048171321 @default.
- W4387245828 creator A5067857507 @default.
- W4387245828 date "2023-01-01" @default.
- W4387245828 modified "2023-10-13" @default.
- W4387245828 title "Rotating Stomata Measurement Based on Anchor-free Object Detection and Stomata Conductance Calculation" @default.
- W4387245828 cites W1497522712 @default.
- W4387245828 cites W1751960266 @default.
- W4387245828 cites W1977900683 @default.
- W4387245828 cites W2012683495 @default.
- W4387245828 cites W2019182222 @default.
- W4387245828 cites W2027464716 @default.
- W4387245828 cites W2029774887 @default.
- W4387245828 cites W2035853823 @default.
- W4387245828 cites W2038491103 @default.
- W4387245828 cites W2141043581 @default.
- W4387245828 cites W2167564230 @default.
- W4387245828 cites W2203234120 @default.
- W4387245828 cites W2475573132 @default.
- W4387245828 cites W2508822515 @default.
- W4387245828 cites W2532269402 @default.
- W4387245828 cites W2601564443 @default.
- W4387245828 cites W2767150407 @default.
- W4387245828 cites W2786373059 @default.
- W4387245828 cites W2895285119 @default.
- W4387245828 cites W2911569540 @default.
- W4387245828 cites W2943957125 @default.
- W4387245828 cites W2945710659 @default.
- W4387245828 cites W2947304841 @default.
- W4387245828 cites W2955806662 @default.
- W4387245828 cites W2963323244 @default.
- W4387245828 cites W2963351448 @default.
- W4387245828 cites W2982770724 @default.
- W4387245828 cites W3011099433 @default.
- W4387245828 cites W3012573144 @default.
- W4387245828 cites W3080255489 @default.
- W4387245828 cites W3082115252 @default.
- W4387245828 cites W3087172717 @default.
- W4387245828 cites W3088750230 @default.
- W4387245828 cites W3117103593 @default.
- W4387245828 cites W3153763215 @default.
- W4387245828 cites W3159324452 @default.
- W4387245828 cites W3170033848 @default.
- W4387245828 cites W3173658130 @default.
- W4387245828 cites W3174873843 @default.
- W4387245828 cites W3186787792 @default.
- W4387245828 cites W4214648418 @default.
- W4387245828 cites W4247233452 @default.
- W4387245828 cites W4283800076 @default.
- W4387245828 cites W4290715466 @default.
- W4387245828 cites W4312443924 @default.
- W4387245828 cites W4318483458 @default.
- W4387245828 cites W4320996005 @default.
- W4387245828 doi "https://doi.org/10.34133/plantphenomics.0106" @default.
- W4387245828 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37817885" @default.
- W4387245828 hasPublicationYear "2023" @default.
- W4387245828 type Work @default.
- W4387245828 citedByCount "0" @default.
- W4387245828 crossrefType "journal-article" @default.
- W4387245828 hasAuthorship W4387245828A5004956076 @default.
- W4387245828 hasAuthorship W4387245828A5047348227 @default.
- W4387245828 hasAuthorship W4387245828A5048171321 @default.
- W4387245828 hasAuthorship W4387245828A5067857507 @default.
- W4387245828 hasBestOaLocation W43872458281 @default.
- W4387245828 hasConcept C121332964 @default.
- W4387245828 hasConcept C121932024 @default.
- W4387245828 hasConcept C186060115 @default.
- W4387245828 hasConcept C26873012 @default.
- W4387245828 hasConcept C2778755073 @default.
- W4387245828 hasConcept C59822182 @default.
- W4387245828 hasConcept C62520636 @default.
- W4387245828 hasConcept C86803240 @default.
- W4387245828 hasConceptScore W4387245828C121332964 @default.
- W4387245828 hasConceptScore W4387245828C121932024 @default.
- W4387245828 hasConceptScore W4387245828C186060115 @default.
- W4387245828 hasConceptScore W4387245828C26873012 @default.
- W4387245828 hasConceptScore W4387245828C2778755073 @default.
- W4387245828 hasConceptScore W4387245828C59822182 @default.
- W4387245828 hasConceptScore W4387245828C62520636 @default.
- W4387245828 hasConceptScore W4387245828C86803240 @default.
- W4387245828 hasLocation W43872458281 @default.
- W4387245828 hasLocation W43872458282 @default.
- W4387245828 hasOpenAccess W4387245828 @default.
- W4387245828 hasPrimaryLocation W43872458281 @default.
- W4387245828 hasRelatedWork W1641042124 @default.
- W4387245828 hasRelatedWork W1990804418 @default.
- W4387245828 hasRelatedWork W1993764875 @default.
- W4387245828 hasRelatedWork W2013243191 @default.
- W4387245828 hasRelatedWork W2051339581 @default.
- W4387245828 hasRelatedWork W2082860237 @default.
- W4387245828 hasRelatedWork W2117258802 @default.
- W4387245828 hasRelatedWork W2130076355 @default.
- W4387245828 hasRelatedWork W2151865869 @default.
- W4387245828 hasRelatedWork W3215139134 @default.
- W4387245828 hasVolume "5" @default.
- W4387245828 isParatext "false" @default.
- W4387245828 isRetracted "false" @default.