Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387246200> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4387246200 endingPage "58" @default.
- W4387246200 startingPage "53" @default.
- W4387246200 abstract "Traditionally, computer systems are designed to optimize classic notions of performance such as flow completion time, cost, etc. The system performance is then typically evaluated by characterizing theoretical bounds in worst-case settings over a single performance metric. In the next generation of computer systems, societal design criteria, such as carbon awareness and fairness, becomes a first-class design goal. However, the classic performance metrics may conflict with societal criteria. Foundational understanding and performance evaluations of systems with these inherent trade-offs lead to novel research questions that could be considered new educational components for performance analysis courses. The classic techniques, e.g., worst-case analysis, for systems with conflicting objectives may lead to the impossibility of results. However, a foundational understanding of the impossibility of results calls for new techniques and tools. In traditional performance evaluation, to understand the foundational limits, typically, it is sufficient to derive lower-bound arguments in worst-case settings. In the new era of system design, lower bounds are inherently about trade-offs between different objectives. Characterizing these trade-offs in settings with multiple design criteria is closer to the notion of Pareto-optimality, which is drastically different from classic lower bounds. With the impossibility of results using classic paradigms, one possible direction is to (re)design systems following the emerging direction of learning-augmented algorithms. With this approach, it might be possible to remove/mitigate the foundational conflict between classic vs. societal metrics using the right predictions. However, the performance evaluation of learning-augmented algorithms calls for a new set of technical questions, which we highlight in this paper." @default.
- W4387246200 created "2023-10-03" @default.
- W4387246200 creator A5046146251 @default.
- W4387246200 date "2023-09-28" @default.
- W4387246200 modified "2023-10-03" @default.
- W4387246200 title "Trade-off Analysis in Learning-augmented Algorithms with Societal Design Criteria" @default.
- W4387246200 cites W1494101111 @default.
- W4387246200 cites W2118877434 @default.
- W4387246200 cites W2120881346 @default.
- W4387246200 cites W2546477115 @default.
- W4387246200 cites W2569077675 @default.
- W4387246200 cites W2794925984 @default.
- W4387246200 cites W3177131999 @default.
- W4387246200 cites W4200120397 @default.
- W4387246200 cites W4284892726 @default.
- W4387246200 cites W4311079979 @default.
- W4387246200 doi "https://doi.org/10.1145/3626570.3626590" @default.
- W4387246200 hasPublicationYear "2023" @default.
- W4387246200 type Work @default.
- W4387246200 citedByCount "0" @default.
- W4387246200 crossrefType "journal-article" @default.
- W4387246200 hasAuthorship W4387246200A5046146251 @default.
- W4387246200 hasConcept C119857082 @default.
- W4387246200 hasConcept C126255220 @default.
- W4387246200 hasConcept C134306372 @default.
- W4387246200 hasConcept C137635306 @default.
- W4387246200 hasConcept C154945302 @default.
- W4387246200 hasConcept C162324750 @default.
- W4387246200 hasConcept C176217482 @default.
- W4387246200 hasConcept C17744445 @default.
- W4387246200 hasConcept C187736073 @default.
- W4387246200 hasConcept C199539241 @default.
- W4387246200 hasConcept C21547014 @default.
- W4387246200 hasConcept C2776261394 @default.
- W4387246200 hasConcept C2780898871 @default.
- W4387246200 hasConcept C33923547 @default.
- W4387246200 hasConcept C41008148 @default.
- W4387246200 hasConcept C77553402 @default.
- W4387246200 hasConceptScore W4387246200C119857082 @default.
- W4387246200 hasConceptScore W4387246200C126255220 @default.
- W4387246200 hasConceptScore W4387246200C134306372 @default.
- W4387246200 hasConceptScore W4387246200C137635306 @default.
- W4387246200 hasConceptScore W4387246200C154945302 @default.
- W4387246200 hasConceptScore W4387246200C162324750 @default.
- W4387246200 hasConceptScore W4387246200C176217482 @default.
- W4387246200 hasConceptScore W4387246200C17744445 @default.
- W4387246200 hasConceptScore W4387246200C187736073 @default.
- W4387246200 hasConceptScore W4387246200C199539241 @default.
- W4387246200 hasConceptScore W4387246200C21547014 @default.
- W4387246200 hasConceptScore W4387246200C2776261394 @default.
- W4387246200 hasConceptScore W4387246200C2780898871 @default.
- W4387246200 hasConceptScore W4387246200C33923547 @default.
- W4387246200 hasConceptScore W4387246200C41008148 @default.
- W4387246200 hasConceptScore W4387246200C77553402 @default.
- W4387246200 hasIssue "2" @default.
- W4387246200 hasLocation W43872462001 @default.
- W4387246200 hasOpenAccess W4387246200 @default.
- W4387246200 hasPrimaryLocation W43872462001 @default.
- W4387246200 hasRelatedWork W2100319127 @default.
- W4387246200 hasRelatedWork W2811172746 @default.
- W4387246200 hasRelatedWork W2894625764 @default.
- W4387246200 hasRelatedWork W2961085424 @default.
- W4387246200 hasRelatedWork W3099103017 @default.
- W4387246200 hasRelatedWork W4210601864 @default.
- W4387246200 hasRelatedWork W4306674287 @default.
- W4387246200 hasRelatedWork W4312795480 @default.
- W4387246200 hasRelatedWork W878889913 @default.
- W4387246200 hasRelatedWork W87936626 @default.
- W4387246200 hasVolume "51" @default.
- W4387246200 isParatext "false" @default.
- W4387246200 isRetracted "false" @default.
- W4387246200 workType "article" @default.