Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387246552> ?p ?o ?g. }
- W4387246552 endingPage "129816" @default.
- W4387246552 startingPage "129816" @default.
- W4387246552 abstract "This research comprehensively investigates the co-pyrolysis of sewage sludge (SS) and waste tobacco stem (WTS). Various SS and WTS ratios (1:0, 0.75:0.25, 0.50:0.50, 0.25:0.75, and 0:1) were tested over a range of heating rates (30 °C to 800 °C). Apparent activation energies were calculated using model-free methods, and the co-pyrolysis mechanism was described with the master plot method. Results suggest that SS and WTS co-pyrolysis follows power-law models (P3, P4). Among blends, S75W25 exhibited optimal synergy, with the lowest activation energy required for the pyrolysis reactions and inhibits CO2 emissions. S75W25's pyrolysis gas primarily contained acids (e.g., ethylxanthogenacetic acid, acetic acid), hydrocarbons (e.g., supraene, cyclopropyl carbinol), and other compounds (e.g., CO2, pyrazine, pyridine, indole). ANN was utilized to forecast the temperature-mass loss relationships in co-pyrolysis, with the optimal model being ANN21, yielding a high correlation coefficient (R2 = 0.99999). This study offers guidance for the efficient utilization of waste SS and WTS." @default.
- W4387246552 created "2023-10-03" @default.
- W4387246552 creator A5007498662 @default.
- W4387246552 creator A5053047087 @default.
- W4387246552 creator A5053725057 @default.
- W4387246552 creator A5055912360 @default.
- W4387246552 creator A5061800592 @default.
- W4387246552 creator A5091194552 @default.
- W4387246552 date "2023-12-01" @default.
- W4387246552 modified "2023-10-18" @default.
- W4387246552 title "Co-pyrolysis of sewage sludge and waste tobacco stem: Gas products analysis, pyrolysis kinetics, artificial neural network modeling, and synergistic effects" @default.
- W4387246552 cites W1826489968 @default.
- W4387246552 cites W2048781370 @default.
- W4387246552 cites W2065511972 @default.
- W4387246552 cites W2067209663 @default.
- W4387246552 cites W2076566455 @default.
- W4387246552 cites W2334706611 @default.
- W4387246552 cites W2346590102 @default.
- W4387246552 cites W2522801033 @default.
- W4387246552 cites W2562077976 @default.
- W4387246552 cites W2750609858 @default.
- W4387246552 cites W2752854824 @default.
- W4387246552 cites W2768704247 @default.
- W4387246552 cites W2793085003 @default.
- W4387246552 cites W2795996952 @default.
- W4387246552 cites W2800499581 @default.
- W4387246552 cites W2806851567 @default.
- W4387246552 cites W2908440159 @default.
- W4387246552 cites W2970171624 @default.
- W4387246552 cites W2971192605 @default.
- W4387246552 cites W2984433244 @default.
- W4387246552 cites W3011079057 @default.
- W4387246552 cites W3044814889 @default.
- W4387246552 cites W3066984381 @default.
- W4387246552 cites W3080974070 @default.
- W4387246552 cites W3084866766 @default.
- W4387246552 cites W3134462632 @default.
- W4387246552 cites W3181251462 @default.
- W4387246552 cites W3197819670 @default.
- W4387246552 cites W3200087708 @default.
- W4387246552 cites W3205395198 @default.
- W4387246552 cites W3215319655 @default.
- W4387246552 cites W383204086 @default.
- W4387246552 cites W4205355193 @default.
- W4387246552 cites W4206265708 @default.
- W4387246552 cites W4213160120 @default.
- W4387246552 cites W4224129039 @default.
- W4387246552 cites W4283702651 @default.
- W4387246552 cites W4289516306 @default.
- W4387246552 cites W4312221682 @default.
- W4387246552 cites W4376865934 @default.
- W4387246552 cites W4378554297 @default.
- W4387246552 cites W4379533053 @default.
- W4387246552 cites W942934099 @default.
- W4387246552 doi "https://doi.org/10.1016/j.biortech.2023.129816" @default.
- W4387246552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37793553" @default.
- W4387246552 hasPublicationYear "2023" @default.
- W4387246552 type Work @default.
- W4387246552 citedByCount "0" @default.
- W4387246552 crossrefType "journal-article" @default.
- W4387246552 hasAuthorship W4387246552A5007498662 @default.
- W4387246552 hasAuthorship W4387246552A5053047087 @default.
- W4387246552 hasAuthorship W4387246552A5053725057 @default.
- W4387246552 hasAuthorship W4387246552A5055912360 @default.
- W4387246552 hasAuthorship W4387246552A5061800592 @default.
- W4387246552 hasAuthorship W4387246552A5091194552 @default.
- W4387246552 hasConcept C115540264 @default.
- W4387246552 hasConcept C121332964 @default.
- W4387246552 hasConcept C127413603 @default.
- W4387246552 hasConcept C13965031 @default.
- W4387246552 hasConcept C148898269 @default.
- W4387246552 hasConcept C178790620 @default.
- W4387246552 hasConcept C185592680 @default.
- W4387246552 hasConcept C2776673659 @default.
- W4387246552 hasConcept C2780859252 @default.
- W4387246552 hasConcept C36759035 @default.
- W4387246552 hasConcept C42360764 @default.
- W4387246552 hasConcept C528095902 @default.
- W4387246552 hasConcept C548081761 @default.
- W4387246552 hasConcept C58790150 @default.
- W4387246552 hasConcept C62520636 @default.
- W4387246552 hasConcept C6557445 @default.
- W4387246552 hasConcept C86803240 @default.
- W4387246552 hasConcept C95121573 @default.
- W4387246552 hasConceptScore W4387246552C115540264 @default.
- W4387246552 hasConceptScore W4387246552C121332964 @default.
- W4387246552 hasConceptScore W4387246552C127413603 @default.
- W4387246552 hasConceptScore W4387246552C13965031 @default.
- W4387246552 hasConceptScore W4387246552C148898269 @default.
- W4387246552 hasConceptScore W4387246552C178790620 @default.
- W4387246552 hasConceptScore W4387246552C185592680 @default.
- W4387246552 hasConceptScore W4387246552C2776673659 @default.
- W4387246552 hasConceptScore W4387246552C2780859252 @default.
- W4387246552 hasConceptScore W4387246552C36759035 @default.
- W4387246552 hasConceptScore W4387246552C42360764 @default.
- W4387246552 hasConceptScore W4387246552C528095902 @default.
- W4387246552 hasConceptScore W4387246552C548081761 @default.
- W4387246552 hasConceptScore W4387246552C58790150 @default.