Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387247611> ?p ?o ?g. }
- W4387247611 endingPage "109668" @default.
- W4387247611 startingPage "109617" @default.
- W4387247611 abstract "Deep Neural Networks (DNNs) have shown impressive performance in computer vision tasks; however, their vulnerability to adversarial attacks raises concerns regarding their security and reliability. Extensive research has shown that DNNs can be compromised by carefully crafted perturbations, leading to significant performance degradation in both digital and physical domains. Therefore, ensuring the security of DNN-based systems is crucial, particularly in safety-critical domains such as autonomous driving, robotics, smart homes/cities, smart industries, video surveillance, and healthcare. In this paper, we present a comprehensive survey of the current trends focusing specifically on physical adversarial attacks. We aim to provide a thorough understanding of the concept of physical adversarial attacks, analyzing their key characteristics and distinguishing features. Furthermore, we explore the specific requirements and challenges associated with executing attacks in the physical world. Our article delves into various physical adversarial attack methods, categorized according to their target tasks in different applications, including classification, detection, face recognition, semantic segmentation and depth estimation. We assess the performance of these attack methods in terms of their effectiveness, stealthiness, and robustness. We examine how each technique strives to ensure the successful manipulation of DNNs while mitigating the risk of detection and withstanding real-world distortions. Lastly, we discuss the current challenges and outline potential future research directions in the field of physical adversarial attacks. We highlight the need for enhanced defense mechanisms, the exploration of novel attack strategies, the evaluation of attacks in different application domains, and the establishment of standardized benchmarks and evaluation criteria for physical adversarial attacks. Through this comprehensive survey, we aim to provide a valuable resource for researchers, practitioners, and policymakers to gain a holistic understanding of physical adversarial attacks in computer vision and facilitate the development of robust and secure DNN-based systems." @default.
- W4387247611 created "2023-10-03" @default.
- W4387247611 creator A5005190949 @default.
- W4387247611 creator A5012650826 @default.
- W4387247611 creator A5051699271 @default.
- W4387247611 creator A5068248146 @default.
- W4387247611 date "2023-01-01" @default.
- W4387247611 modified "2023-10-15" @default.
- W4387247611 title "Physical Adversarial Attacks For Camera-based Smart Systems: Current Trends, Categorization, Applications, Research Challenges, and Future Outlook" @default.
- W4387247611 cites W1536680647 @default.
- W4387247611 cites W1915485278 @default.
- W4387247611 cites W1922126009 @default.
- W4387247611 cites W2008213335 @default.
- W4387247611 cites W2013894622 @default.
- W4387247611 cites W2025890843 @default.
- W4387247611 cites W2067713319 @default.
- W4387247611 cites W2080873731 @default.
- W4387247611 cites W2119112357 @default.
- W4387247611 cites W2152195021 @default.
- W4387247611 cites W2161969291 @default.
- W4387247611 cites W2164598857 @default.
- W4387247611 cites W2183341477 @default.
- W4387247611 cites W2535873859 @default.
- W4387247611 cites W2560474170 @default.
- W4387247611 cites W2562637781 @default.
- W4387247611 cites W2570343428 @default.
- W4387247611 cites W2610332124 @default.
- W4387247611 cites W2736506089 @default.
- W4387247611 cites W2740520864 @default.
- W4387247611 cites W2798302089 @default.
- W4387247611 cites W2798520250 @default.
- W4387247611 cites W2905311601 @default.
- W4387247611 cites W2905423756 @default.
- W4387247611 cites W2932026309 @default.
- W4387247611 cites W2942074357 @default.
- W4387247611 cites W2942091739 @default.
- W4387247611 cites W2962793481 @default.
- W4387247611 cites W2963073614 @default.
- W4387247611 cites W2963150697 @default.
- W4387247611 cites W2963448658 @default.
- W4387247611 cites W2963466847 @default.
- W4387247611 cites W2963527086 @default.
- W4387247611 cites W2963542245 @default.
- W4387247611 cites W2963671154 @default.
- W4387247611 cites W2963726920 @default.
- W4387247611 cites W2963857521 @default.
- W4387247611 cites W2964043980 @default.
- W4387247611 cites W2964082701 @default.
- W4387247611 cites W2964217532 @default.
- W4387247611 cites W2969003636 @default.
- W4387247611 cites W2969664989 @default.
- W4387247611 cites W2983371255 @default.
- W4387247611 cites W2998656009 @default.
- W4387247611 cites W2998904801 @default.
- W4387247611 cites W3000420771 @default.
- W4387247611 cites W3015625436 @default.
- W4387247611 cites W3017485054 @default.
- W4387247611 cites W3027378069 @default.
- W4387247611 cites W3034823537 @default.
- W4387247611 cites W3034946754 @default.
- W4387247611 cites W3035447895 @default.
- W4387247611 cites W3035524670 @default.
- W4387247611 cites W3041975737 @default.
- W4387247611 cites W3090358134 @default.
- W4387247611 cites W3094821564 @default.
- W4387247611 cites W3094984771 @default.
- W4387247611 cites W3099206234 @default.
- W4387247611 cites W3101267861 @default.
- W4387247611 cites W3105806188 @default.
- W4387247611 cites W3107990944 @default.
- W4387247611 cites W3112265985 @default.
- W4387247611 cites W3127284993 @default.
- W4387247611 cites W3154528133 @default.
- W4387247611 cites W3157070795 @default.
- W4387247611 cites W3166898278 @default.
- W4387247611 cites W3172863135 @default.
- W4387247611 cites W3174032462 @default.
- W4387247611 cites W3175451538 @default.
- W4387247611 cites W3176237058 @default.
- W4387247611 cites W3176380844 @default.
- W4387247611 cites W3176477939 @default.
- W4387247611 cites W3179647175 @default.
- W4387247611 cites W3185095134 @default.
- W4387247611 cites W3186714066 @default.
- W4387247611 cites W3189402954 @default.
- W4387247611 cites W3192213611 @default.
- W4387247611 cites W3193340642 @default.
- W4387247611 cites W3196107314 @default.
- W4387247611 cites W3196878101 @default.
- W4387247611 cites W3198460218 @default.
- W4387247611 cites W3202707779 @default.
- W4387247611 cites W3203790781 @default.
- W4387247611 cites W3204155906 @default.
- W4387247611 cites W3204515789 @default.
- W4387247611 cites W3205672068 @default.
- W4387247611 cites W3210780202 @default.
- W4387247611 cites W3215404543 @default.
- W4387247611 cites W4200150166 @default.