Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387247658> ?p ?o ?g. }
- W4387247658 endingPage "108602" @default.
- W4387247658 startingPage "108591" @default.
- W4387247658 abstract "Acute myocardial infarction (AMI) is the main cause of death in developed and developing countries. AMI is a serious medical problem that necessitates hospitalization and sometimes results in death. Patients hospitalized in the emergency department (ED) should therefore receive an immediate diagnosis and treatment. Many studies have been conducted on the prognosis of AMI with hemogram parameters. However, no study has investigated potential hemogram parameters for the diagnosis of AMI using an interpretable artificial intelligence-based clinical approach. The purpose of this research is to implement the principles of explainable artificial intelligence (XAI) in the analysis of hematological predictors for AMI. In this retrospective analysis, 477 (48.6%) patients with AMI and 504 (51.4%) healthy individuals were enrolled and assessed in predicting AMI. Of the patients with AMI, 182 (38%) had an ST-segment elevation MI (STEMI), and 295 (62%) had a non-ST-segment elevation MI (NSTEMI). Demographic and hematological information of the patients was analyzed to determine AMI. The XAI approach combined with machine learning approaches (Extreme Gradient Boosting, XGB; Adaptive Boosting, AB; Light Gradient Boosting Machine, LGBM) was applied for the estimation of AMI and distinguishing subgroups of AMI (STEMI and NSTEMI). The SHAP approach was used to explain the predictions intuitively. After selecting the 10 most important hematological parameters for AMI, the LGBM model achieved 83% and 74% accuracy for prediction of AMI, and distinguishing subgroups of AMI (STEMI and NSTEMI), respectively. SHAP results showed that neutrophil (NEU), white blood cell (WBC), platelet width of distribution (PDW), and basophil (BA) were the most important for AMI prediction. Mean corpuscular volume (MCV), BA, monocytes (MO), and lymphocytes (LY) were the most important hematological parameters that distinguish STEMI from NSTEMI. The proposed model serves as a valuable tool for physicians, facilitating the diagnosis, treatment, and follow-up of patients with AMI and distinguishing subgroups of AMI (STEMI and NSTEMI). Analyzing readily accessible hemogram parameters empowers medical professionals to make informed decisions and provide enhanced care to a wide range of individuals." @default.
- W4387247658 created "2023-10-03" @default.
- W4387247658 creator A5023211480 @default.
- W4387247658 creator A5046745413 @default.
- W4387247658 creator A5057749913 @default.
- W4387247658 creator A5075983516 @default.
- W4387247658 creator A5085489082 @default.
- W4387247658 date "2023-01-01" @default.
- W4387247658 modified "2023-10-11" @default.
- W4387247658 title "Assessment of Hematological Predictors via Explainable Artificial Intelligence in the Prediction of Acute Myocardial Infarction" @default.
- W4387247658 cites W1544244813 @default.
- W4387247658 cites W1631830381 @default.
- W4387247658 cites W1884250153 @default.
- W4387247658 cites W1973651197 @default.
- W4387247658 cites W1976182231 @default.
- W4387247658 cites W2036504476 @default.
- W4387247658 cites W2042963738 @default.
- W4387247658 cites W2056775918 @default.
- W4387247658 cites W2059540883 @default.
- W4387247658 cites W2060671390 @default.
- W4387247658 cites W2060718650 @default.
- W4387247658 cites W2063361093 @default.
- W4387247658 cites W2070697546 @default.
- W4387247658 cites W2079369879 @default.
- W4387247658 cites W2082812721 @default.
- W4387247658 cites W2088262770 @default.
- W4387247658 cites W2091999264 @default.
- W4387247658 cites W2093222233 @default.
- W4387247658 cites W2105397247 @default.
- W4387247658 cites W2142612940 @default.
- W4387247658 cites W2152099551 @default.
- W4387247658 cites W2154314020 @default.
- W4387247658 cites W2167762095 @default.
- W4387247658 cites W2171216913 @default.
- W4387247658 cites W2290860875 @default.
- W4387247658 cites W2335882713 @default.
- W4387247658 cites W2338691560 @default.
- W4387247658 cites W2567798105 @default.
- W4387247658 cites W2576798260 @default.
- W4387247658 cites W2605563215 @default.
- W4387247658 cites W2612703120 @default.
- W4387247658 cites W2754054868 @default.
- W4387247658 cites W2778279711 @default.
- W4387247658 cites W2791465098 @default.
- W4387247658 cites W2793745331 @default.
- W4387247658 cites W2883022187 @default.
- W4387247658 cites W2891092817 @default.
- W4387247658 cites W2893106883 @default.
- W4387247658 cites W2893117920 @default.
- W4387247658 cites W2896222795 @default.
- W4387247658 cites W2910445867 @default.
- W4387247658 cites W2974921125 @default.
- W4387247658 cites W2994985074 @default.
- W4387247658 cites W3021308819 @default.
- W4387247658 cites W3026226589 @default.
- W4387247658 cites W3043316700 @default.
- W4387247658 cites W3044900462 @default.
- W4387247658 cites W3088755787 @default.
- W4387247658 cites W4238277289 @default.
- W4387247658 cites W4283775132 @default.
- W4387247658 cites W4284672748 @default.
- W4387247658 cites W4284899989 @default.
- W4387247658 cites W4285494545 @default.
- W4387247658 cites W4285596892 @default.
- W4387247658 cites W4292856638 @default.
- W4387247658 cites W4293226904 @default.
- W4387247658 cites W4318016644 @default.
- W4387247658 cites W4318677254 @default.
- W4387247658 cites W4319224973 @default.
- W4387247658 cites W4321483852 @default.
- W4387247658 cites W4361990634 @default.
- W4387247658 cites W4365998039 @default.
- W4387247658 cites W797402188 @default.
- W4387247658 doi "https://doi.org/10.1109/access.2023.3321509" @default.
- W4387247658 hasPublicationYear "2023" @default.
- W4387247658 type Work @default.
- W4387247658 citedByCount "0" @default.
- W4387247658 crossrefType "journal-article" @default.
- W4387247658 hasAuthorship W4387247658A5023211480 @default.
- W4387247658 hasAuthorship W4387247658A5046745413 @default.
- W4387247658 hasAuthorship W4387247658A5057749913 @default.
- W4387247658 hasAuthorship W4387247658A5075983516 @default.
- W4387247658 hasAuthorship W4387247658A5085489082 @default.
- W4387247658 hasBestOaLocation W43872476581 @default.
- W4387247658 hasConcept C118552586 @default.
- W4387247658 hasConcept C119857082 @default.
- W4387247658 hasConcept C126322002 @default.
- W4387247658 hasConcept C164705383 @default.
- W4387247658 hasConcept C2780724011 @default.
- W4387247658 hasConcept C41008148 @default.
- W4387247658 hasConcept C46686674 @default.
- W4387247658 hasConcept C500558357 @default.
- W4387247658 hasConcept C71924100 @default.
- W4387247658 hasConceptScore W4387247658C118552586 @default.
- W4387247658 hasConceptScore W4387247658C119857082 @default.
- W4387247658 hasConceptScore W4387247658C126322002 @default.
- W4387247658 hasConceptScore W4387247658C164705383 @default.
- W4387247658 hasConceptScore W4387247658C2780724011 @default.