Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387251036> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4387251036 abstract "This research study proposes a deep learning approach based on a recurrent neural network and it utilizes two popular types of RNNs - Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) and Monte Carlo simulation to effectively solve multi-dimensional stochastic Itô-Volterra integral equations (MSIVIE). In numerical experiments and practical applications, the proposed approach achieves reliability and great accuracy compared to current methods. Using optimization techniques such as Adam further enhances the model's performance. The adaptability of the approach is demonstrated through various scenarios, and error analysis is conducted to validate its efficacy. The numerical computations are implemented in Python and MATLAB. Consequently, provided visualizations such as loss function and actual and predicted function value graphs for a better understanding of the solution behaviour." @default.
- W4387251036 created "2023-10-03" @default.
- W4387251036 creator A5004219395 @default.
- W4387251036 creator A5007127321 @default.
- W4387251036 creator A5076853350 @default.
- W4387251036 creator A5084447118 @default.
- W4387251036 date "2023-07-29" @default.
- W4387251036 modified "2023-10-06" @default.
- W4387251036 title "A Novel Method for Optimizing Numerical Solutions of Multi-Dimensional Itô-Volterra Stochastic Integral Equation Using Recurrent Neural Network" @default.
- W4387251036 cites W1864302588 @default.
- W4387251036 cites W2018495737 @default.
- W4387251036 cites W2048693776 @default.
- W4387251036 cites W2054126364 @default.
- W4387251036 cites W2802806002 @default.
- W4387251036 cites W2906741168 @default.
- W4387251036 cites W2911856951 @default.
- W4387251036 cites W3024128727 @default.
- W4387251036 cites W3199188964 @default.
- W4387251036 cites W4220824047 @default.
- W4387251036 cites W4283816005 @default.
- W4387251036 cites W4319969397 @default.
- W4387251036 doi "https://doi.org/10.1109/aic57670.2023.10263827" @default.
- W4387251036 hasPublicationYear "2023" @default.
- W4387251036 type Work @default.
- W4387251036 citedByCount "0" @default.
- W4387251036 crossrefType "proceedings-article" @default.
- W4387251036 hasAuthorship W4387251036A5004219395 @default.
- W4387251036 hasAuthorship W4387251036A5007127321 @default.
- W4387251036 hasAuthorship W4387251036A5076853350 @default.
- W4387251036 hasAuthorship W4387251036A5084447118 @default.
- W4387251036 hasConcept C105795698 @default.
- W4387251036 hasConcept C111919701 @default.
- W4387251036 hasConcept C11413529 @default.
- W4387251036 hasConcept C121332964 @default.
- W4387251036 hasConcept C126255220 @default.
- W4387251036 hasConcept C134306372 @default.
- W4387251036 hasConcept C147168706 @default.
- W4387251036 hasConcept C154945302 @default.
- W4387251036 hasConcept C163258240 @default.
- W4387251036 hasConcept C177606310 @default.
- W4387251036 hasConcept C18903297 @default.
- W4387251036 hasConcept C19499675 @default.
- W4387251036 hasConcept C21965488 @default.
- W4387251036 hasConcept C27016315 @default.
- W4387251036 hasConcept C2780365114 @default.
- W4387251036 hasConcept C28826006 @default.
- W4387251036 hasConcept C33923547 @default.
- W4387251036 hasConcept C41008148 @default.
- W4387251036 hasConcept C43214815 @default.
- W4387251036 hasConcept C45374587 @default.
- W4387251036 hasConcept C50644808 @default.
- W4387251036 hasConcept C519991488 @default.
- W4387251036 hasConcept C62520636 @default.
- W4387251036 hasConcept C86803240 @default.
- W4387251036 hasConcept C91873725 @default.
- W4387251036 hasConceptScore W4387251036C105795698 @default.
- W4387251036 hasConceptScore W4387251036C111919701 @default.
- W4387251036 hasConceptScore W4387251036C11413529 @default.
- W4387251036 hasConceptScore W4387251036C121332964 @default.
- W4387251036 hasConceptScore W4387251036C126255220 @default.
- W4387251036 hasConceptScore W4387251036C134306372 @default.
- W4387251036 hasConceptScore W4387251036C147168706 @default.
- W4387251036 hasConceptScore W4387251036C154945302 @default.
- W4387251036 hasConceptScore W4387251036C163258240 @default.
- W4387251036 hasConceptScore W4387251036C177606310 @default.
- W4387251036 hasConceptScore W4387251036C18903297 @default.
- W4387251036 hasConceptScore W4387251036C19499675 @default.
- W4387251036 hasConceptScore W4387251036C21965488 @default.
- W4387251036 hasConceptScore W4387251036C27016315 @default.
- W4387251036 hasConceptScore W4387251036C2780365114 @default.
- W4387251036 hasConceptScore W4387251036C28826006 @default.
- W4387251036 hasConceptScore W4387251036C33923547 @default.
- W4387251036 hasConceptScore W4387251036C41008148 @default.
- W4387251036 hasConceptScore W4387251036C43214815 @default.
- W4387251036 hasConceptScore W4387251036C45374587 @default.
- W4387251036 hasConceptScore W4387251036C50644808 @default.
- W4387251036 hasConceptScore W4387251036C519991488 @default.
- W4387251036 hasConceptScore W4387251036C62520636 @default.
- W4387251036 hasConceptScore W4387251036C86803240 @default.
- W4387251036 hasConceptScore W4387251036C91873725 @default.
- W4387251036 hasLocation W43872510361 @default.
- W4387251036 hasOpenAccess W4387251036 @default.
- W4387251036 hasPrimaryLocation W43872510361 @default.
- W4387251036 hasRelatedWork W2014667605 @default.
- W4387251036 hasRelatedWork W2031624200 @default.
- W4387251036 hasRelatedWork W2118560105 @default.
- W4387251036 hasRelatedWork W2358959122 @default.
- W4387251036 hasRelatedWork W2517687681 @default.
- W4387251036 hasRelatedWork W2754932876 @default.
- W4387251036 hasRelatedWork W3130959766 @default.
- W4387251036 hasRelatedWork W325682659 @default.
- W4387251036 hasRelatedWork W4225984655 @default.
- W4387251036 hasRelatedWork W1826865795 @default.
- W4387251036 isParatext "false" @default.
- W4387251036 isRetracted "false" @default.
- W4387251036 workType "article" @default.