Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387251331> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4387251331 abstract "The changing world of work brings with it massive changes. However, it is largely unclear what exactly these changes will look like in terms of the skills required. In order to close part of this knowledge gap, we collected, classified, and analyzed 12.66 million job advertisements published online in Germany from 2014 to 2020 in the fields of administration & customer care, human resources, marketing & sales, and information technology. We specifically focus on the ability to evaluate skills in higher-level clusters and how these develop in different industries and company sizes over time. We find major differences in the speed of adjustment between the professional fields. In addition, we cluster industries according to their demand and development over time for specific skills. This allows industries to be identified in which the demand for skills is much alike. Companies that are a part of a particular cluster might therefore specifically look for employees from other companies in the same cluster, as their overall skill requirements are similar. In addition, we train a Long Short-Term Memory (LSTM) predictor with synthetically generated data using a Time-Generative-Adversarial-Network (TimeGAN) on real validation and test data, which outperforms the model trained only with real data. For the training, time series of the demand of entire industries is aggregated into single time series, which further emphasizes the benefit of generating synthetic data in applications with a small subset of data." @default.
- W4387251331 created "2023-10-03" @default.
- W4387251331 creator A5048366763 @default.
- W4387251331 creator A5052346863 @default.
- W4387251331 creator A5055162657 @default.
- W4387251331 date "2023-07-29" @default.
- W4387251331 modified "2023-10-06" @default.
- W4387251331 title "Generating Synthetic Data for Better Prediction Modeling in Skill Demand Forecasting" @default.
- W4387251331 cites W2064675550 @default.
- W4387251331 cites W2091735588 @default.
- W4387251331 cites W2100937829 @default.
- W4387251331 cites W2106658976 @default.
- W4387251331 cites W2144994235 @default.
- W4387251331 cites W2593962681 @default.
- W4387251331 cites W2734875900 @default.
- W4387251331 cites W2889326414 @default.
- W4387251331 cites W2976535495 @default.
- W4387251331 cites W3014524660 @default.
- W4387251331 cites W3196024535 @default.
- W4387251331 cites W4281251945 @default.
- W4387251331 cites W4376848418 @default.
- W4387251331 doi "https://doi.org/10.1109/aic57670.2023.10263811" @default.
- W4387251331 hasPublicationYear "2023" @default.
- W4387251331 type Work @default.
- W4387251331 citedByCount "0" @default.
- W4387251331 crossrefType "proceedings-article" @default.
- W4387251331 hasAuthorship W4387251331A5048366763 @default.
- W4387251331 hasAuthorship W4387251331A5052346863 @default.
- W4387251331 hasAuthorship W4387251331A5055162657 @default.
- W4387251331 hasConcept C10138342 @default.
- W4387251331 hasConcept C119857082 @default.
- W4387251331 hasConcept C120665830 @default.
- W4387251331 hasConcept C121332964 @default.
- W4387251331 hasConcept C127413603 @default.
- W4387251331 hasConcept C144133560 @default.
- W4387251331 hasConcept C151406439 @default.
- W4387251331 hasConcept C162853370 @default.
- W4387251331 hasConcept C164866538 @default.
- W4387251331 hasConcept C182306322 @default.
- W4387251331 hasConcept C18762648 @default.
- W4387251331 hasConcept C192209626 @default.
- W4387251331 hasConcept C193809577 @default.
- W4387251331 hasConcept C199360897 @default.
- W4387251331 hasConcept C2522767166 @default.
- W4387251331 hasConcept C41008148 @default.
- W4387251331 hasConcept C56739046 @default.
- W4387251331 hasConcept C67186912 @default.
- W4387251331 hasConcept C77088390 @default.
- W4387251331 hasConcept C78519656 @default.
- W4387251331 hasConceptScore W4387251331C10138342 @default.
- W4387251331 hasConceptScore W4387251331C119857082 @default.
- W4387251331 hasConceptScore W4387251331C120665830 @default.
- W4387251331 hasConceptScore W4387251331C121332964 @default.
- W4387251331 hasConceptScore W4387251331C127413603 @default.
- W4387251331 hasConceptScore W4387251331C144133560 @default.
- W4387251331 hasConceptScore W4387251331C151406439 @default.
- W4387251331 hasConceptScore W4387251331C162853370 @default.
- W4387251331 hasConceptScore W4387251331C164866538 @default.
- W4387251331 hasConceptScore W4387251331C182306322 @default.
- W4387251331 hasConceptScore W4387251331C18762648 @default.
- W4387251331 hasConceptScore W4387251331C192209626 @default.
- W4387251331 hasConceptScore W4387251331C193809577 @default.
- W4387251331 hasConceptScore W4387251331C199360897 @default.
- W4387251331 hasConceptScore W4387251331C2522767166 @default.
- W4387251331 hasConceptScore W4387251331C41008148 @default.
- W4387251331 hasConceptScore W4387251331C56739046 @default.
- W4387251331 hasConceptScore W4387251331C67186912 @default.
- W4387251331 hasConceptScore W4387251331C77088390 @default.
- W4387251331 hasConceptScore W4387251331C78519656 @default.
- W4387251331 hasLocation W43872513311 @default.
- W4387251331 hasOpenAccess W4387251331 @default.
- W4387251331 hasPrimaryLocation W43872513311 @default.
- W4387251331 hasRelatedWork W2353730437 @default.
- W4387251331 hasRelatedWork W2365677836 @default.
- W4387251331 hasRelatedWork W2402761219 @default.
- W4387251331 hasRelatedWork W2490303674 @default.
- W4387251331 hasRelatedWork W2609066826 @default.
- W4387251331 hasRelatedWork W2785900585 @default.
- W4387251331 hasRelatedWork W2810752900 @default.
- W4387251331 hasRelatedWork W3106595551 @default.
- W4387251331 hasRelatedWork W3186538219 @default.
- W4387251331 hasRelatedWork W4385335406 @default.
- W4387251331 isParatext "false" @default.
- W4387251331 isRetracted "false" @default.
- W4387251331 workType "article" @default.