Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387252171> ?p ?o ?g. }
- W4387252171 endingPage "91" @default.
- W4387252171 startingPage "68" @default.
- W4387252171 abstract "Deep learning techniques have revolutionized biomedical applications such as arrhythmia detection, analysis of cardiac sensed signals, and cell-free synthetic biology. This chapter provides an introduction to each topic, discusses the role of deep learning techniques, highlights recent advancements, and explores the challenges and future directions in these areas. It also provides an introduction to cardiac sensed signals and their relevance in cardiology and explores the role of deep learning in analyzing and interpreting cardiac signals. Cell-free synthetic biology is also discussed, including applications in gene circuit design and metabolic engineering. Deep learning techniques are increasingly being used in biomedical applications and are important for personalized medicine, explainability and interpretability, real-time monitoring and intervention, adaptive optimization, and integration with other technologies." @default.
- W4387252171 created "2023-10-03" @default.
- W4387252171 creator A5003047541 @default.
- W4387252171 creator A5034549025 @default.
- W4387252171 creator A5043092565 @default.
- W4387252171 creator A5065488437 @default.
- W4387252171 creator A5085123135 @default.
- W4387252171 date "2023-10-02" @default.
- W4387252171 modified "2023-10-03" @default.
- W4387252171 title "Deep Learning Techniques Revolutionizing Biomedical Applications" @default.
- W4387252171 cites W2153067536 @default.
- W4387252171 cites W2531156685 @default.
- W4387252171 cites W2554509691 @default.
- W4387252171 cites W2792366154 @default.
- W4387252171 cites W2951934944 @default.
- W4387252171 cites W2963907999 @default.
- W4387252171 cites W2968665392 @default.
- W4387252171 cites W2969035745 @default.
- W4387252171 cites W2984759351 @default.
- W4387252171 cites W3013966144 @default.
- W4387252171 cites W3093086118 @default.
- W4387252171 cites W3172805423 @default.
- W4387252171 cites W3213224786 @default.
- W4387252171 cites W4200209705 @default.
- W4387252171 cites W4233556531 @default.
- W4387252171 cites W4283801208 @default.
- W4387252171 cites W4285229078 @default.
- W4387252171 cites W4289641875 @default.
- W4387252171 cites W4293147433 @default.
- W4387252171 cites W4309301999 @default.
- W4387252171 cites W4309833747 @default.
- W4387252171 cites W4309833988 @default.
- W4387252171 cites W4318718183 @default.
- W4387252171 cites W4318753190 @default.
- W4387252171 cites W4318753195 @default.
- W4387252171 cites W4321200817 @default.
- W4387252171 cites W4321202103 @default.
- W4387252171 cites W4321350922 @default.
- W4387252171 cites W4322577278 @default.
- W4387252171 cites W4322577382 @default.
- W4387252171 cites W4323545173 @default.
- W4387252171 cites W4323661423 @default.
- W4387252171 cites W4361023909 @default.
- W4387252171 cites W4361023912 @default.
- W4387252171 cites W4361023969 @default.
- W4387252171 cites W4366086392 @default.
- W4387252171 cites W4366825323 @default.
- W4387252171 cites W4366825385 @default.
- W4387252171 cites W4366825386 @default.
- W4387252171 cites W4376454736 @default.
- W4387252171 cites W4376454763 @default.
- W4387252171 cites W4381548007 @default.
- W4387252171 cites W4382243439 @default.
- W4387252171 cites W4382989710 @default.
- W4387252171 cites W4382989727 @default.
- W4387252171 cites W4382991107 @default.
- W4387252171 cites W4383815724 @default.
- W4387252171 cites W4384296795 @default.
- W4387252171 cites W4384296899 @default.
- W4387252171 cites W4384296942 @default.
- W4387252171 cites W4385447125 @default.
- W4387252171 cites W4385455631 @default.
- W4387252171 cites W4385464577 @default.
- W4387252171 cites W4385464598 @default.
- W4387252171 cites W4385464640 @default.
- W4387252171 cites W4385584867 @default.
- W4387252171 cites W4386160754 @default.
- W4387252171 cites W4386160785 @default.
- W4387252171 cites W4386160801 @default.
- W4387252171 cites W4386172739 @default.
- W4387252171 cites W4386172888 @default.
- W4387252171 cites W4386172890 @default.
- W4387252171 cites W4386182300 @default.
- W4387252171 cites W4386182550 @default.
- W4387252171 doi "https://doi.org/10.4018/978-1-6684-6577-6.ch004" @default.
- W4387252171 hasPublicationYear "2023" @default.
- W4387252171 type Work @default.
- W4387252171 citedByCount "0" @default.
- W4387252171 crossrefType "book-chapter" @default.
- W4387252171 hasAuthorship W4387252171A5003047541 @default.
- W4387252171 hasAuthorship W4387252171A5034549025 @default.
- W4387252171 hasAuthorship W4387252171A5043092565 @default.
- W4387252171 hasAuthorship W4387252171A5065488437 @default.
- W4387252171 hasAuthorship W4387252171A5085123135 @default.
- W4387252171 hasConcept C108583219 @default.
- W4387252171 hasConcept C154945302 @default.
- W4387252171 hasConcept C158154518 @default.
- W4387252171 hasConcept C17744445 @default.
- W4387252171 hasConcept C191908910 @default.
- W4387252171 hasConcept C199539241 @default.
- W4387252171 hasConcept C2522767166 @default.
- W4387252171 hasConcept C2781067378 @default.
- W4387252171 hasConcept C32220436 @default.
- W4387252171 hasConcept C41008148 @default.
- W4387252171 hasConcept C60644358 @default.
- W4387252171 hasConcept C70721500 @default.
- W4387252171 hasConcept C86803240 @default.
- W4387252171 hasConceptScore W4387252171C108583219 @default.