Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387259719> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4387259719 abstract "Abstract Background Ovarian cancer ranks the leading cause of gynecologic cancer-related death in the United States and the fifth most common cause of cancer-related mortality among American women. Increasing evidences have highlighted the vital role of macrophages M2/M1 proportion in tumor progression, prognosis and immunotherapy. Methods Weighted gene co-expression network analysis (WGCNA) was performed to identify macrophages related markers. Integrative procedure including 10 machine learning algorithms were performed to develop a prognostic macrophage related signature (MRS) with TCGA, GSE14764, GSE140082 datasets. The role of MRS in tumor microenvironment (TME) and therapy response was evaluated with the data of CIBERSORT, MCPcounter, QUANTISEQ, XCELL, CIBERSORT-ABS, TIMER and EPIC, GSE91061 and IMvigor210 dataset. Results The optimal MRS developed by the combination of CoxBoost and StepCox[forward] algorithm served as an independent risk factor in ovarian cancer. Compared with stage, grade and other established prognostic signatures, the current MRS had a better performance in predicting the overall survival rate of ovarian cancer patients. Low risk score indicated a higher TME score, higher level of immune cells, higher immunophenoscore, higher tumor mutational burden, lower TIDE score and lower IC50 value in ovarian cancer. The survival prediction nomogram had a good potential for clinical application in predicting the 1-, 3-, and 5-year overall survival rate of ovarian cancer patients. Conclusion All in all, the current study constructed a powerful prognostic MRS for ovarian cancer patients using 10 machine learning algorithms. This MRS could predict the prognosis and drug sensitivity in ovarian cancer." @default.
- W4387259719 created "2023-10-03" @default.
- W4387259719 creator A5037606431 @default.
- W4387259719 creator A5055093285 @default.
- W4387259719 date "2023-10-02" @default.
- W4387259719 modified "2023-10-15" @default.
- W4387259719 title "A macrophage related signature for predicting prognosis and drug sensitivity in ovarian cancer based on integrative machine learning" @default.
- W4387259719 cites W1966327575 @default.
- W4387259719 cites W2012034410 @default.
- W4387259719 cites W2061123122 @default.
- W4387259719 cites W2788142646 @default.
- W4387259719 cites W2793011605 @default.
- W4387259719 cites W2796207838 @default.
- W4387259719 cites W2886498337 @default.
- W4387259719 cites W2898311959 @default.
- W4387259719 cites W2909679049 @default.
- W4387259719 cites W2949273159 @default.
- W4387259719 cites W2966710588 @default.
- W4387259719 cites W3001363353 @default.
- W4387259719 cites W3003918022 @default.
- W4387259719 cites W3009788614 @default.
- W4387259719 cites W3010197652 @default.
- W4387259719 cites W3012668557 @default.
- W4387259719 cites W3014142960 @default.
- W4387259719 cites W3026733592 @default.
- W4387259719 cites W3040604859 @default.
- W4387259719 cites W3048911626 @default.
- W4387259719 cites W3093637735 @default.
- W4387259719 cites W3099043519 @default.
- W4387259719 cites W3104819386 @default.
- W4387259719 cites W3129082336 @default.
- W4387259719 cites W3144571741 @default.
- W4387259719 cites W3171517418 @default.
- W4387259719 cites W3175407259 @default.
- W4387259719 cites W3201437718 @default.
- W4387259719 cites W3208830425 @default.
- W4387259719 cites W4200537911 @default.
- W4387259719 cites W4211163163 @default.
- W4387259719 cites W4225114447 @default.
- W4387259719 cites W4226136872 @default.
- W4387259719 cites W4281628940 @default.
- W4387259719 cites W4291993576 @default.
- W4387259719 cites W4295942945 @default.
- W4387259719 cites W4296907702 @default.
- W4387259719 cites W4311192977 @default.
- W4387259719 cites W4313558864 @default.
- W4387259719 cites W4322718934 @default.
- W4387259719 cites W4323924278 @default.
- W4387259719 doi "https://doi.org/10.1186/s12920-023-01671-z" @default.
- W4387259719 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37784081" @default.
- W4387259719 hasPublicationYear "2023" @default.
- W4387259719 type Work @default.
- W4387259719 citedByCount "0" @default.
- W4387259719 crossrefType "journal-article" @default.
- W4387259719 hasAuthorship W4387259719A5037606431 @default.
- W4387259719 hasAuthorship W4387259719A5055093285 @default.
- W4387259719 hasBestOaLocation W43872597191 @default.
- W4387259719 hasConcept C121608353 @default.
- W4387259719 hasConcept C126322002 @default.
- W4387259719 hasConcept C143998085 @default.
- W4387259719 hasConcept C2777701055 @default.
- W4387259719 hasConcept C2780427987 @default.
- W4387259719 hasConcept C34626388 @default.
- W4387259719 hasConcept C71924100 @default.
- W4387259719 hasConceptScore W4387259719C121608353 @default.
- W4387259719 hasConceptScore W4387259719C126322002 @default.
- W4387259719 hasConceptScore W4387259719C143998085 @default.
- W4387259719 hasConceptScore W4387259719C2777701055 @default.
- W4387259719 hasConceptScore W4387259719C2780427987 @default.
- W4387259719 hasConceptScore W4387259719C34626388 @default.
- W4387259719 hasConceptScore W4387259719C71924100 @default.
- W4387259719 hasIssue "1" @default.
- W4387259719 hasLocation W43872597191 @default.
- W4387259719 hasLocation W43872597192 @default.
- W4387259719 hasOpenAccess W4387259719 @default.
- W4387259719 hasPrimaryLocation W43872597191 @default.
- W4387259719 hasRelatedWork W1970018641 @default.
- W4387259719 hasRelatedWork W1993821226 @default.
- W4387259719 hasRelatedWork W1999313618 @default.
- W4387259719 hasRelatedWork W2004029742 @default.
- W4387259719 hasRelatedWork W2063908487 @default.
- W4387259719 hasRelatedWork W2089138782 @default.
- W4387259719 hasRelatedWork W2409329088 @default.
- W4387259719 hasRelatedWork W2806270659 @default.
- W4387259719 hasRelatedWork W4226494765 @default.
- W4387259719 hasRelatedWork W4233588653 @default.
- W4387259719 hasVolume "16" @default.
- W4387259719 isParatext "false" @default.
- W4387259719 isRetracted "false" @default.
- W4387259719 workType "article" @default.