Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387261731> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4387261731 abstract "The aviation industry is changing significantly as market demands and customer expectations evolve. Aircraft must be designed and manufactured with a future-oriented production system that incorporates computational intelligence, connectivity, and decentralization to ensure the highest levels of quality and performance. By leveraging these technologies, real-time monitoring and continuous process improvement can be achieved through collecting and processing massive amounts of data, accompanied by more sophisticated communication protocols. Among the many operations involved in component assembly, drilling processes are particularly relevant in the aeronautical industry. When drilling airframe components, hybrid joints are generated by combining stacks of various materials, such as titanium and Carbon Fiber-Reinforced Plastic (CFRP). Due to the complexity of drilling these hybrid stacks and the need to adhere to strict quality and safety standards, the cost-per-hole can be pretty high. Consequently, scientific studies in this area are of great interest, as they offer the potential to increase productivity and reduce costs. This research aims to investigate using spindle power consumption signals obtained directly from an industrial drilling system to monitor tool wear evolution. Signal pre-processing, feature extraction, selection, and validation are used to analyze data from two sources: the spindle power consumption signals obtained from the internal instrumentation of the machine and the cutting tool. The study focuses on automatic drilling operations carried out in hybrid stacks at an aircraft manufacturing facility, and the results show a strong correlation between power consumption and tool wear. These findings suggest the potential to develop a non-intrusive tool condition monitoring system that could be applied to other machining processes in the industry." @default.
- W4387261731 created "2023-10-03" @default.
- W4387261731 creator A5005252633 @default.
- W4387261731 creator A5029216001 @default.
- W4387261731 creator A5041650858 @default.
- W4387261731 creator A5083152534 @default.
- W4387261731 creator A5092987350 @default.
- W4387261731 date "2023-10-02" @default.
- W4387261731 modified "2023-10-03" @default.
- W4387261731 title "Data Analytics Applied to Tool Condition Monitoring during Drilling of Hybrid Stacks in Industrial Aircraft Production Systems" @default.
- W4387261731 cites W2000304567 @default.
- W4387261731 cites W2010335050 @default.
- W4387261731 cites W2065058192 @default.
- W4387261731 cites W2515767994 @default.
- W4387261731 cites W2765293533 @default.
- W4387261731 cites W3100736258 @default.
- W4387261731 cites W3157526033 @default.
- W4387261731 cites W3157818305 @default.
- W4387261731 cites W3163939800 @default.
- W4387261731 cites W3204397274 @default.
- W4387261731 cites W4289277576 @default.
- W4387261731 cites W4308498142 @default.
- W4387261731 cites W4321065109 @default.
- W4387261731 cites W574506127 @default.
- W4387261731 doi "https://doi.org/10.4028/p-pqojp8" @default.
- W4387261731 hasPublicationYear "2023" @default.
- W4387261731 type Work @default.
- W4387261731 citedByCount "0" @default.
- W4387261731 crossrefType "proceedings-article" @default.
- W4387261731 hasAuthorship W4387261731A5005252633 @default.
- W4387261731 hasAuthorship W4387261731A5029216001 @default.
- W4387261731 hasAuthorship W4387261731A5041650858 @default.
- W4387261731 hasAuthorship W4387261731A5083152534 @default.
- W4387261731 hasAuthorship W4387261731A5092987350 @default.
- W4387261731 hasConcept C117671659 @default.
- W4387261731 hasConcept C127413603 @default.
- W4387261731 hasConcept C146978453 @default.
- W4387261731 hasConcept C171146098 @default.
- W4387261731 hasConcept C201995342 @default.
- W4387261731 hasConcept C205167488 @default.
- W4387261731 hasConcept C25197100 @default.
- W4387261731 hasConcept C2776450708 @default.
- W4387261731 hasConcept C41008148 @default.
- W4387261731 hasConcept C523214423 @default.
- W4387261731 hasConcept C5941749 @default.
- W4387261731 hasConcept C78519656 @default.
- W4387261731 hasConceptScore W4387261731C117671659 @default.
- W4387261731 hasConceptScore W4387261731C127413603 @default.
- W4387261731 hasConceptScore W4387261731C146978453 @default.
- W4387261731 hasConceptScore W4387261731C171146098 @default.
- W4387261731 hasConceptScore W4387261731C201995342 @default.
- W4387261731 hasConceptScore W4387261731C205167488 @default.
- W4387261731 hasConceptScore W4387261731C25197100 @default.
- W4387261731 hasConceptScore W4387261731C2776450708 @default.
- W4387261731 hasConceptScore W4387261731C41008148 @default.
- W4387261731 hasConceptScore W4387261731C523214423 @default.
- W4387261731 hasConceptScore W4387261731C5941749 @default.
- W4387261731 hasConceptScore W4387261731C78519656 @default.
- W4387261731 hasLocation W43872617311 @default.
- W4387261731 hasOpenAccess W4387261731 @default.
- W4387261731 hasPrimaryLocation W43872617311 @default.
- W4387261731 hasRelatedWork W2368872677 @default.
- W4387261731 hasRelatedWork W2379360538 @default.
- W4387261731 hasRelatedWork W2388058536 @default.
- W4387261731 hasRelatedWork W2988283825 @default.
- W4387261731 hasRelatedWork W3016320177 @default.
- W4387261731 hasRelatedWork W3023140725 @default.
- W4387261731 hasRelatedWork W3206675350 @default.
- W4387261731 hasRelatedWork W4281633949 @default.
- W4387261731 hasRelatedWork W4293793777 @default.
- W4387261731 hasRelatedWork W250926143 @default.
- W4387261731 isParatext "false" @default.
- W4387261731 isRetracted "false" @default.
- W4387261731 workType "article" @default.