Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387264211> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4387264211 endingPage "e15417" @default.
- W4387264211 startingPage "e15417" @default.
- W4387264211 abstract "Undoubtedly, the importance of food and food security as one of the present and future challenges is not invisible to anyone. Nowadays, the development of methods for monitoring the nutrient content in crop products is an essential issue for implementing reasonable and logical soil properties management. The modeling technique can evaluate the soil properties of fields and study the subject of crop yield through soil management. This study aims to predict fruit yield and macro-nutrient content in plant organs of Cucumis melo in response to soil elements using support vector regression (SVR).In the spring of 2020, this study was done as a factorial test in a randomized complete block design with three replications. The first factor was the use of fertilizers in six levels: no fertilizer (control), cow manure (30 t ha-1), sheep manure (30 t ha-1), nanobiomic foliar application (2 l ha-1), silicone foliar application (3 l ha-1), and chemical fertilizer from urea, triple superphosphate, and potassium sulfate sources (200, 100, and 150 kg ha-1). In addition, four levels of vermicompost considering as the second factor: no vermicompost (control), 5, 10, and 15 t ha-1. Input data sets such as fruit yield and nitrogen, phosphorus, and potassium levels in the seeds, fruits, leaves, and roots are used to calibrate the probabilistic model of SP using SVR.According to the results, when the data sets of the nitrogen, phosphorus, and potassium in the fruit uses as input, the accuracy of these models was higher than 80.0% (R2 = 0.807 for predicting fruit nitrogen; R2 = 0.999 for fruit phosphorus; R2 = 0.968 for fruit potassium). Also, the results of the prediction models in response to soil elements showed that the soil nitrogen content ranged from 0.05 to 1.1%, soil phosphorus from 10 to 59 mg kg-1, and soil potassium from 180 to 320 mg kg-1, which offers a suitable macro-nutrient content in the soil. Likewise, the best fruit nitrogen content ranged from 1.27 to 4.33%, fruit phosphorus from 15.74 to 26.19%, fruit potassium from 15.19 to 19.67%, and fruit yield from 2.16 to 5.95 kg per plant obtained under NPK chemical fertilizers and using 15 t ha-1 of vermicompost.Because the fruit values had the highest contribution in prediction than observed values, thus identified as the best plant organs in response to soil elements. Based on our findings, the importance of fruit phosphorus identifies as a determinant that strongly influenced melon prediction models. More significant values of soil elements do not affect increasing fruit yield and macro-nutrient content in plant organs, and excessive application may not be economical. Therefore, our studies provide an efficient approach with potentially high accuracy to estimate fruit yield and macro-nutrient in the fruits of Cucumis melo in response to soil elements and cause a saving in the amount of fertilizer during the growing season." @default.
- W4387264211 created "2023-10-03" @default.
- W4387264211 creator A5035856314 @default.
- W4387264211 creator A5053819107 @default.
- W4387264211 creator A5084483343 @default.
- W4387264211 creator A5084749584 @default.
- W4387264211 date "2023-10-02" @default.
- W4387264211 modified "2023-10-11" @default.
- W4387264211 title "Prediction models of macro-nutrient content in plant organs of <i>Cucumis melo</i> in response to soil elements using support vector regression" @default.
- W4387264211 cites W1273049524 @default.
- W4387264211 cites W1524837792 @default.
- W4387264211 cites W1967490609 @default.
- W4387264211 cites W1980677473 @default.
- W4387264211 cites W1998053851 @default.
- W4387264211 cites W2016922085 @default.
- W4387264211 cites W2045256553 @default.
- W4387264211 cites W2046384460 @default.
- W4387264211 cites W2052903566 @default.
- W4387264211 cites W2056924249 @default.
- W4387264211 cites W2101506802 @default.
- W4387264211 cites W2156909104 @default.
- W4387264211 cites W2162710852 @default.
- W4387264211 cites W2166570091 @default.
- W4387264211 cites W2191363078 @default.
- W4387264211 cites W2267508191 @default.
- W4387264211 cites W2319026284 @default.
- W4387264211 cites W2520879866 @default.
- W4387264211 cites W2593593732 @default.
- W4387264211 cites W2594368475 @default.
- W4387264211 cites W2604785767 @default.
- W4387264211 cites W2773146783 @default.
- W4387264211 cites W2799301829 @default.
- W4387264211 cites W2883575878 @default.
- W4387264211 cites W2891975230 @default.
- W4387264211 cites W2896715775 @default.
- W4387264211 cites W2908839819 @default.
- W4387264211 cites W2962995786 @default.
- W4387264211 cites W2968096044 @default.
- W4387264211 cites W3168858690 @default.
- W4387264211 cites W4206755159 @default.
- W4387264211 doi "https://doi.org/10.7717/peerj.15417" @default.
- W4387264211 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37810792" @default.
- W4387264211 hasPublicationYear "2023" @default.
- W4387264211 type Work @default.
- W4387264211 citedByCount "0" @default.
- W4387264211 crossrefType "journal-article" @default.
- W4387264211 hasAuthorship W4387264211A5035856314 @default.
- W4387264211 hasAuthorship W4387264211A5053819107 @default.
- W4387264211 hasAuthorship W4387264211A5084483343 @default.
- W4387264211 hasAuthorship W4387264211A5084749584 @default.
- W4387264211 hasBestOaLocation W43872642111 @default.
- W4387264211 hasConcept C126343540 @default.
- W4387264211 hasConcept C142796444 @default.
- W4387264211 hasConcept C144938864 @default.
- W4387264211 hasConcept C178790620 @default.
- W4387264211 hasConcept C185592680 @default.
- W4387264211 hasConcept C2780260515 @default.
- W4387264211 hasConcept C2780560099 @default.
- W4387264211 hasConcept C33923547 @default.
- W4387264211 hasConcept C38304854 @default.
- W4387264211 hasConcept C39432304 @default.
- W4387264211 hasConcept C510538283 @default.
- W4387264211 hasConcept C6557445 @default.
- W4387264211 hasConcept C86803240 @default.
- W4387264211 hasConceptScore W4387264211C126343540 @default.
- W4387264211 hasConceptScore W4387264211C142796444 @default.
- W4387264211 hasConceptScore W4387264211C144938864 @default.
- W4387264211 hasConceptScore W4387264211C178790620 @default.
- W4387264211 hasConceptScore W4387264211C185592680 @default.
- W4387264211 hasConceptScore W4387264211C2780260515 @default.
- W4387264211 hasConceptScore W4387264211C2780560099 @default.
- W4387264211 hasConceptScore W4387264211C33923547 @default.
- W4387264211 hasConceptScore W4387264211C38304854 @default.
- W4387264211 hasConceptScore W4387264211C39432304 @default.
- W4387264211 hasConceptScore W4387264211C510538283 @default.
- W4387264211 hasConceptScore W4387264211C6557445 @default.
- W4387264211 hasConceptScore W4387264211C86803240 @default.
- W4387264211 hasLocation W43872642111 @default.
- W4387264211 hasLocation W43872642112 @default.
- W4387264211 hasOpenAccess W4387264211 @default.
- W4387264211 hasPrimaryLocation W43872642111 @default.
- W4387264211 hasRelatedWork W2355457896 @default.
- W4387264211 hasRelatedWork W2474531478 @default.
- W4387264211 hasRelatedWork W2773788690 @default.
- W4387264211 hasRelatedWork W3035555412 @default.
- W4387264211 hasRelatedWork W3102825727 @default.
- W4387264211 hasRelatedWork W3163700412 @default.
- W4387264211 hasRelatedWork W3187565636 @default.
- W4387264211 hasRelatedWork W4210361328 @default.
- W4387264211 hasRelatedWork W4366423445 @default.
- W4387264211 hasRelatedWork W2556449375 @default.
- W4387264211 hasVolume "11" @default.
- W4387264211 isParatext "false" @default.
- W4387264211 isRetracted "false" @default.
- W4387264211 workType "article" @default.