Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387267013> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4387267013 endingPage "102190" @default.
- W4387267013 startingPage "102190" @default.
- W4387267013 abstract "The construction industry, traditionally labor-intensive, has now been evolving towards automation and the incorporation of intelligence. Notably, the shear wall layout has been a critical component in structural construction, where neural networks have promoted the emergence of sophisticated design methods. These methods integrate graph neural networks (GNNs), successfully mitigating the computational resource demands and challenges in capturing the topological features, which are the impediments in pixel image-based methods. However, the existing GNN-based methods marginally accommodate structural design conditions and underperform in fulfilling practical engineering requirements. Specifically, these methods overlook influential factors such as the peak ground acceleration (PGA) of the design basis earthquake (DBE), characteristic ground period, and building height, all of which are crucial to the shear wall layout design. To address this research gap, this study proposes an innovative GNN-based design method that duly incorporates design conditions—including the PGA of the DBE, characteristic ground period, and building height—and rigorously evaluates its advantages over previous approaches. The findings confirm the efficiency and reliability of the proposed design-condition-informed method and highlight its capability to accurately correlate shear wall layouts with design conditions." @default.
- W4387267013 created "2023-10-03" @default.
- W4387267013 creator A5027247153 @default.
- W4387267013 creator A5031833695 @default.
- W4387267013 creator A5038988509 @default.
- W4387267013 creator A5049097498 @default.
- W4387267013 creator A5090077498 @default.
- W4387267013 creator A5091489017 @default.
- W4387267013 date "2023-10-01" @default.
- W4387267013 modified "2023-10-03" @default.
- W4387267013 title "Design-condition-informed shear wall layout design based on graph neural networks" @default.
- W4387267013 cites W1536680647 @default.
- W4387267013 cites W2037013461 @default.
- W4387267013 cites W2102540282 @default.
- W4387267013 cites W2941626378 @default.
- W4387267013 cites W3087662357 @default.
- W4387267013 cites W3124413522 @default.
- W4387267013 cites W3157259013 @default.
- W4387267013 cites W3162472090 @default.
- W4387267013 cites W3197543795 @default.
- W4387267013 cites W3201032957 @default.
- W4387267013 cites W4205752496 @default.
- W4387267013 cites W4206482253 @default.
- W4387267013 cites W4220696506 @default.
- W4387267013 cites W4228998103 @default.
- W4387267013 cites W4291711121 @default.
- W4387267013 cites W4293008809 @default.
- W4387267013 cites W4306962223 @default.
- W4387267013 cites W4308154889 @default.
- W4387267013 cites W4310019722 @default.
- W4387267013 cites W4317535178 @default.
- W4387267013 doi "https://doi.org/10.1016/j.aei.2023.102190" @default.
- W4387267013 hasPublicationYear "2023" @default.
- W4387267013 type Work @default.
- W4387267013 citedByCount "0" @default.
- W4387267013 crossrefType "journal-article" @default.
- W4387267013 hasAuthorship W4387267013A5027247153 @default.
- W4387267013 hasAuthorship W4387267013A5031833695 @default.
- W4387267013 hasAuthorship W4387267013A5038988509 @default.
- W4387267013 hasAuthorship W4387267013A5049097498 @default.
- W4387267013 hasAuthorship W4387267013A5090077498 @default.
- W4387267013 hasAuthorship W4387267013A5091489017 @default.
- W4387267013 hasConcept C112698675 @default.
- W4387267013 hasConcept C115901376 @default.
- W4387267013 hasConcept C127413603 @default.
- W4387267013 hasConcept C132525143 @default.
- W4387267013 hasConcept C144133560 @default.
- W4387267013 hasConcept C154945302 @default.
- W4387267013 hasConcept C170901245 @default.
- W4387267013 hasConcept C188985296 @default.
- W4387267013 hasConcept C41008148 @default.
- W4387267013 hasConcept C50644808 @default.
- W4387267013 hasConcept C66938386 @default.
- W4387267013 hasConcept C78519656 @default.
- W4387267013 hasConcept C80444323 @default.
- W4387267013 hasConceptScore W4387267013C112698675 @default.
- W4387267013 hasConceptScore W4387267013C115901376 @default.
- W4387267013 hasConceptScore W4387267013C127413603 @default.
- W4387267013 hasConceptScore W4387267013C132525143 @default.
- W4387267013 hasConceptScore W4387267013C144133560 @default.
- W4387267013 hasConceptScore W4387267013C154945302 @default.
- W4387267013 hasConceptScore W4387267013C170901245 @default.
- W4387267013 hasConceptScore W4387267013C188985296 @default.
- W4387267013 hasConceptScore W4387267013C41008148 @default.
- W4387267013 hasConceptScore W4387267013C50644808 @default.
- W4387267013 hasConceptScore W4387267013C66938386 @default.
- W4387267013 hasConceptScore W4387267013C78519656 @default.
- W4387267013 hasConceptScore W4387267013C80444323 @default.
- W4387267013 hasLocation W43872670131 @default.
- W4387267013 hasOpenAccess W4387267013 @default.
- W4387267013 hasPrimaryLocation W43872670131 @default.
- W4387267013 hasRelatedWork W1520015260 @default.
- W4387267013 hasRelatedWork W1906743446 @default.
- W4387267013 hasRelatedWork W1975163903 @default.
- W4387267013 hasRelatedWork W2009555759 @default.
- W4387267013 hasRelatedWork W2031580068 @default.
- W4387267013 hasRelatedWork W2334734100 @default.
- W4387267013 hasRelatedWork W2899084033 @default.
- W4387267013 hasRelatedWork W2913528052 @default.
- W4387267013 hasRelatedWork W2964584994 @default.
- W4387267013 hasRelatedWork W4232821822 @default.
- W4387267013 hasVolume "58" @default.
- W4387267013 isParatext "false" @default.
- W4387267013 isRetracted "false" @default.
- W4387267013 workType "article" @default.